Proc Natl Acad Sci U S A
February 2017
Plasmacytoid dendritic cells (pDCs) are known mainly for their secretion of type I IFN upon viral encounter. We describe a CD2CD5CD81 pDC subset, distinguished by prominent dendrites and a mature phenotype, in human blood, bone marrow, and tonsil, which can be generated from CD34 progenitors. These CD2CD5CD81 cells express classical pDC markers, as well as the toll-like receptors that enable conventional pDCs to respond to viral infection.
View Article and Find Full Text PDFInterleukin 17-producing helper T cells (T(H)17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human T(H)17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, T(H)17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells.
View Article and Find Full Text PDFMonocytes rapidly infiltrate inflamed tissues and differentiate into CD209(+) inflammatory dendritic cells (DCs) that promote robust immunity or, if unregulated, inflammatory disease. Previous studies in experimental animal models indicate that inflammatory DC depletion through systemic elimination of their monocyte precursors with clodronate-loaded liposomes ameliorates the development of psoriasis and other diseases. However, translation of systemic monocyte depletion strategies is difficult due to the importance of monocytes during homeostasis and infection clearance.
View Article and Find Full Text PDFThe intracellular location of nucleic acid sensors prevents recognition of extracellular self-DNA released by dying cells. However, on forming a complex with the endogenous antimicrobial peptide LL37, extracellular DNA is transported into endosomal compartments of plasmacytoid dendritic cells, leading to activation of Toll-like receptor-9 and induction of type I IFNs. Whether LL37 also transports self-DNA into nonplasmacytoid dendritic cells, leading to type I IFN production via other intracellular DNA receptors is unknown.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is the fifth most common cause of cancer death among women. Despite its immunogenicity, effective antitumor responses are limited, due, in part, to the presence of forkhead box protein 3-positive (Foxp3(+)) T regulatory (Treg) cells in the tumor microenvironment. However, the mechanisms that regulate the accumulation and the suppressive function of these Foxp3(+) Treg cells are poorly understood.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is a severe and incurable autoimmune disease characterized by chronic activation of plasmacytoid dendritic cells (pDCs) and production of autoantibodies against nuclear self-antigens by hyperreactive B cells. Neutrophils are also implicated in disease pathogenesis; however, the mechanisms involved are unknown. Here, we identified in the sera of SLE patients immunogenic complexes composed of neutrophil-derived antimicrobial peptides and self-DNA.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDCs) are specialized type I interferon (IFN-α/β)-producing cells that express intracellular toll-like receptor (TLR) 7 and TLR9 and recognize viral nucleic acids in the context of infections. We show that pDCs also have the ability to sense host-derived nucleic acids released in common skin wounds. pDCs were found to rapidly infiltrate both murine and human skin wounds and to transiently produce type I IFNs via TLR7- and TLR9-dependent recognition of nucleic acids.
View Article and Find Full Text PDFInterleukin-17 (IL-17) producing T helper cells (T(H)-17) comprise a newly recognized T cell subset with an emerging role in adaptive immunity to a variety of fungi. Whether different airborne fungi trigger a common signaling pathway for T(H)-17 induction, and whether this ability is related to the inherent pathogenic behavior of each fungus is currently unknown. Here we show that, as opposed to primary pathogenic fungi (Histoplasma capsulatum), opportunistic fungal pathogens (Aspergillus and Rhizopus) trigger a common innate sensing pathway in human dendritic cells (DCs) that results in robust production of IL-23 and drives T(H)-17 responses.
View Article and Find Full Text PDFDendritic cell (DC) responses to extracellular self-DNA and self-RNA are prevented by the endosomal seclusion of nucleic acid-recognizing Toll-like receptors (TLRs). In psoriasis, however, plasmacytoid DCs (pDCs) sense self-DNA that is transported to endosomal TLR9 upon forming a complex with the antimicrobial peptide LL37. Whether LL37 also interacts with extracellular self-RNA and how this may contribute to DC activation in psoriasis is not known.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDCs) sense viral and microbial DNA through endosomal Toll-like receptors to produce type 1 interferons. pDCs do not normally respond to self-DNA, but this restriction seems to break down in human autoimmune disease by an as yet poorly understood mechanism. Here we identify the antimicrobial peptide LL37 (also known as CAMP) as the key factor that mediates pDC activation in psoriasis, a common autoimmune disease of the skin.
View Article and Find Full Text PDFAlthough there is evidence for distinct roles of myeloid dendritic cells (DCs [mDCs]) and plasmacytoid pre-DCs (pDCs) in regulating T cell-mediated adaptive immunity, the concept of functional DC subsets has been questioned because of the lack of a molecular mechanism to explain these differences. In this study, we provide direct evidence that maturing mDCs and pDCs express different sets of molecules for T cell priming. Although both maturing mDCs and pDCs upregulate the expression of CD80 and CD86, only pDCs upregulate the expression of inducible costimulator ligand (ICOS-L) and maintain high expression levels upon differentiation into mature DCs.
View Article and Find Full Text PDFRaised serum levels of interferon (IFN)-alpha have been observed in systemic lupus erythematosus (SLE) patients, and these levels are correlated with both disease activity and severity. The origin of this IFN-alpha is still unclear, but increasing evidence suggests the critical involvement of activated plasmacytoid predendritic cells (PDCs). In SLE patients, DNA and RNA viruses, as well as immune complexes (ICs), that consist of autoantibodies specific to self-DNA and RNA protein particles can stimulate production of IFN-alpha.
View Article and Find Full Text PDFIn parallel with the discovery of the immunostimulatory activities of CpG-containing oligodeoxynucleotides, several groups have reported specific DNA sequences that could inhibit activation by CpG-containing oligodeoxynucleotides in mouse models. We show that these inhibitory sequences, termed IRS, inhibit TLR-9-mediated activation in human as well as mouse cells. This inhibitory activity includes proliferation and IL-6 production by B cells, and IFN-alpha and IL-12 production by plasmacytoid dendritic cells.
View Article and Find Full Text PDFCpG-C are a novel class of CpG motif-containing immunostimulatory sequences (ISS) that includes both a 5'-TCG element and a CpG-containing palindrome. CpG-C drive all known ISS activities and, in particular, are potent enhancers of IFN-alpha from plasmacytoid dendritic cells (PDCs). In our examination of CpG-C sequence requirements, we determined that optimal IFN-alpha-inducing activity could be achieved with longer palindromes.
View Article and Find Full Text PDFImmunostimulatory DNA sequences (ISS) containing CpG motifs induce interferon-alpha (IFN-alpha) and interferon-gamma (IFN-gamma) from human peripheral blood mononuclear cells and stimulate human B cells to proliferate and produce IL-6. We studied the motif and structural requirements for both types of activity using novel chimeric immunomodulatory compounds (CICs), which contain multiple heptameric ISS connected by non-nucleoside spacers in both linear and branched configurations. We found that the optimal motifs and structure for IFN-alpha production versus B cell activation differed.
View Article and Find Full Text PDFRecent reports have shown that immunostimulatory sequences (ISS) containing CpG motifs have minimal length requirements (>/=12 bases) for the exertion of immune-enhancing function upon mammalian cells. Herein we demonstrate that short ISS (5-7 bases), which exhibit no activity on their own, induce IFN-gamma and IFN-alpha secretion from human peripheral blood mononuclear cells when adsorbed to the surface of cationic poly(D,L-lactide-co-glycolide) microparticles (cPLGA). Utilizing this technique, we discovered a minimal ISS sequence for induction of IFN-gamma and IFN-alpha from human cells: 5'-TCGXX-3'.
View Article and Find Full Text PDFRecent reports have identified two major classes of CpG motif-containing oligodeoxynucleotide immunostimulatory sequences (ISS): uniformly modified phosphorothioate (PS) oligodeoxyribonucleotides (ODNs), which initiate B cell functions but poorly activate dendritic cells (DCs) to make interferon (IFN)-alpha, and chimeric PS/phosphodiester (PO) ODNs containing runs of six contiguous guanosines, which induce very high levels of plasmacytoid DC (PDC)-derived IFN-alpha but poorly stimulate B cells. We have generated the first reported ISS, C274, which exhibits very potent effects on all human immune cells known to recognize ISS. C274 is a potent inducer of IFN-gamma/IFN-alpha from peripheral blood mononuclear cells and exhibits accelerated kinetics of activity compared with standard ISS.
View Article and Find Full Text PDF