Engineered macromolecules offer compelling means for the therapy of conventionally undruggable interactions in human disease. However, their efficacy is limited by barriers to tissue and intracellular delivery. Inspired by recent advances in molecular barcoding and evolution, we developed BarcodeBabel, a generalized method for the design of libraries of peptide barcodes suitable for high-throughput mass spectrometry proteomics.
View Article and Find Full Text PDFMolecular mechanics (MM) potentials have long been a workhorse of computational chemistry. Leveraging accuracy and speed, these functional forms find use in a wide variety of applications in biomolecular modeling and drug discovery, from rapid virtual screening to detailed free energy calculations. Traditionally, MM potentials have relied on human-curated, inflexible, and poorly extensible discrete chemical perception rules (atom types) for applying parameters to small molecules or biopolymers, making it difficult to optimize both types and parameters to fit quantum chemical or physical property data.
View Article and Find Full Text PDFA high level of physical detail in a molecular model improves its ability to perform high accuracy simulations but can also significantly affect its complexity and computational cost. In some situations, it is worthwhile to add complexity to a model to capture properties of interest; in others, additional complexity is unnecessary and can make simulations computationally infeasible. In this work, we demonstrate the use of Bayesian inference for molecular model selection, using Monte Carlo sampling techniques accelerated with surrogate modeling to evaluate the Bayes factor evidence for different levels of complexity in the two-centered Lennard-Jones + quadrupole (2CLJQ) fluid model.
View Article and Find Full Text PDFThe computation of tautomer ratios of druglike molecules is enormously important in computer-aided drug discovery, as over a quarter of all approved drugs can populate multiple tautomeric species in solution. Unfortunately, accurate calculations of aqueous tautomer ratios-the degree to which these species must be penalized in order to correctly account for tautomers in modeling binding for computer-aided drug discovery-is surprisingly difficult. While quantum chemical approaches to computing aqueous tautomer ratios using continuum solvent models and rigid-rotor harmonic-oscillator thermochemistry are currently state of the art, these methods are still surprisingly inaccurate despite their enormous computational expense.
View Article and Find Full Text PDFMolecular mechanics force fields define how the energy and forces in a molecular system are computed from its atomic positions, thus enabling the study of such systems through computational methods like molecular dynamics and Monte Carlo simulations. Despite progress toward automated force field parametrization, considerable human expertise is required to develop or extend force fields. In particular, human input has long been required to define atom types, which encode chemically unique environments that determine which parameters will be assigned.
View Article and Find Full Text PDFWhile Langevin integrators are popular in the study of equilibrium properties of complex systems, it is challenging to estimate the timestep-induced discretization error: the degree to which the sampled phase-space or configuration-space probability density departs from the desired target density due to the use of a finite integration timestep. Sivak et al., introduced a convenient approach to approximating a natural measure of error between the sampled density and the target equilibrium density, the Kullback-Leibler (KL) divergence, in , but did not specifically address the issue of , which are much more commonly of interest in molecular simulations.
View Article and Find Full Text PDFBiomolecular simulations are typically performed in an aqueous environment where the number of ions remains fixed for the duration of the simulation, generally with either a minimally neutralizing ion environment or a number of salt pairs intended to match the macroscopic salt concentration. In contrast, real biomolecules experience local ion environments where the salt concentration is dynamic and may differ from bulk. The degree of salt concentration variability and average deviation from the macroscopic concentration remains, as yet, unknown.
View Article and Find Full Text PDFAccurately predicting protein-ligand binding affinities and binding modes is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant.
View Article and Find Full Text PDF