Publications by authors named "Josh D Hawk"

Synaptic configurations underpin how the nervous system processes sensory information to produce a behavioral response. This is best understood for chemical synapses, and we know far less about how electrical synaptic configurations modulate sensory information processing and context-specific behaviors. We discovered that innexin 1 (INX-1), a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies underlying thermotaxis behavior in C.

View Article and Find Full Text PDF

Synaptic configurations in precisely wired circuits underpin how sensory information is processed by the nervous system, and the emerging animal behavior. This is best understood for chemical synapses, but far less is known about how electrical synaptic configurations modulate, and in specific neurons, sensory information processing and context-specific behaviors. We discovered that INX-1, a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies during thermotaxis behavior.

View Article and Find Full Text PDF

Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission.

View Article and Find Full Text PDF

Sleep, a state of quiescence associated with growth and restorative processes, is conserved across species. Invertebrates including the nematode exhibit sleep-like states during development, satiety, and stress. Here, we describe behavior and neural activity during sleep and awake states in adult hermaphrodites using new microfluidic methods.

View Article and Find Full Text PDF

Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory.

View Article and Find Full Text PDF

In various physiological contexts, Nr4a genes are transcribed in response to external stimuli as part of an immediate early response that initiates a cascade of gene expression ultimately leading to distinct physiological outcomes in each of these contexts. The signaling pathway that initiates Nr4a gene expression in most of these contexts consists of elevated intracellular cAMP activating PKA, which in turn leads to phosphorylation of CREB and new gene synthesis. This cAMP-PKA-CREB pathway is a central molecular pathway in the formation of a long-term memory.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn1kk5ljqu814hp93q7tjrk18nsu0g1a8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once