Purpose: A novel concept is presented for the formation of stable suspensions composed of low density flocs of high aspect ratio drug particles in hydrofluoroalkane (HFA) propellants, and for subdividing (templating) the flocs with aerosolized HFA droplets to achieve high fine particle fractions with a pressurized metered dose inhaler.
Methods: Bovine serum albumin (BSA) nanorods, produced by thin film freezing (TFF), were added to HFA to form a suspension. Particle properties were analyzed with an Anderson cascade impactor (ACI), static and dynamic light scattering and optical microscopy.
Enzyme activities were determined for lactate dehydrogenase (LDH) powder produced by lyophilization, and two fast freezing processes, spray freeze-drying (SFD) and spray freezing into liquid (SFL) nitrogen. The 0.25 mg/mL LDH aqueous feed solutions included either 30 or 100 mg/mL trehalose.
View Article and Find Full Text PDFThe mechanisms for the formation of high surface area lysozyme particles in spray freezing processes are described as a function of spray geometry and atomization, solute concentration and the calculated cooling rate. In the spray freeze-drying (SFD) process, droplets are atomized into a gas and then freeze upon contact with a liquid cryogen. In the spray freezing into liquid (SFL) process, a solution is sprayed directly into the liquid cryogen below the gas-liquid meniscus.
View Article and Find Full Text PDFAn ultra-rapid freezing (URF) technology has been developed to produce high surface area powders composed of solid solutions of an active pharmaceutical ingredient (API) and a polymer stabilizer. A solution of API and polymer excipient(s) is spread on a cold solid surface to form a thin film that freezes in 50 ms to 1s. This study provides an understanding of how the solvent's physical properties and the thin film geometry influence the freezing rate and consequently the final physico-chemical properties of URF-processed powders.
View Article and Find Full Text PDF