Publications by authors named "Josh Childs"

Key Points: This study demonstrates and evaluates the changes in rat vascular smooth muscle cell biomechanics following statin-mediated cholesterol depletion. Evidence is presented to show correlated changes in migration and adhesion of vascular smooth muscle cells to extracellular matrix proteins fibronectin and collagen. Concurrently, integrin α5 expression was enhanced but not integrin α2.

View Article and Find Full Text PDF

Aims: Cholesterol not only deposits in foam cells at the atherosclerotic plaque, but also plays an important role as a regulator of cell migration in atherogenesis. In addition, the progression of atherosclerosis leads to arterial wall stiffening, and thus altering the micromechanical environment of vascular smooth muscle cells (VSMCs) in vivo. Our studies aim to test the hypothesis that membrane cholesterol and substrate stiffness co-ordinate to regulate VSMCs biomechanics, and thus potentially regulate VSMCs migration and atherosclerotic plaque formation.

View Article and Find Full Text PDF

Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) is an attractive technique for studying biomechanical and morphological changes in live cells. Using real-time AFM monitoring of cellular mechanical properties, spontaneous oscillations in cell stiffness and cell adhesion to the extracellular matrix (ECM) have been found. However, the lack of automated analytical approaches to systematically extract oscillatory signals, and noise filtering from a large set of AFM data, is a significant obstacle when quantifying and interpreting the dynamic characteristics of live cells.

View Article and Find Full Text PDF