Esophageal adenocarcinoma (EAC) is a highly lethal cancer of the upper gastrointestinal tract with rising incidence in western populations. To decipher EAC disease progression and therapeutic response, we performed multiomic analyses of a cohort of primary and metastatic EAC tumors, incorporating single-nuclei transcriptomic and chromatin accessibility sequencing, along with spatial profiling. We identified tumor microenvironmental features previously described to associate with therapy response.
View Article and Find Full Text PDFBackground: The phenomenon of field cancerization reflects the transition of normal cells into those predisposed to cancer. Assessing the scope and intensity of this process in the colon may support risk prediction and colorectal cancer prevention.
Methods: The Swiss Epigenetic Colorectal Cancer Study (SWEPIC) study, encompassing 1111 participants for DNA methylation analysis and a subset of 84 for RNA sequencing, was employed to detect field cancerization in individuals with adenomatous polyps (AP).
Identifying cell types based on expression profiles is a pillar of single cell analysis. Existing machine-learning methods identify predictive features from annotated training data, which are often not available in early-stage studies. This can lead to overfitting and inferior performance when applied to new data.
View Article and Find Full Text PDFNumerous cancer types have shown to present hypermethylation of CpG islands, also known as a CpG island methylator phenotype (CIMP), often associated with survival variation. Despite extensive research on CIMP, the etiology of this variability remains elusive, possibly due to lack of consistency in defining CIMP. In this work, we utilize a pan-cancer approach to further explore CIMP, focusing on 26 cancer types profiled in the Cancer Genome Atlas (TCGA).
View Article and Find Full Text PDFHigh-throughput single-cell sequencing (scSeq) technologies are revolutionizing the ability to molecularly profile B and T lymphocytes by offering the opportunity to simultaneously obtain information on adaptive immune receptor repertoires (VDJ repertoires) and transcriptomes. An integrated quantification of immune repertoire parameters, such as germline gene usage, clonal expansion, somatic hypermutation and transcriptional states opens up new possibilities for the high-resolution analysis of lymphocytes and the inference of antigen-specificity. While multiple tools now exist to investigate gene expression profiles from scSeq of transcriptomes, there is a lack of software dedicated to single-cell immune repertoires.
View Article and Find Full Text PDF