Reduced oxygen tensions experienced at high altitudes are thought to predispose to thrombosis, yet there are few studies linking hypoxia, platelet activation, and thrombosis. Reports of platelet phenotypes in hypoxia are inconsistent, perhaps due to differing degrees of hypoxia experienced and the duration of exposure. This study aimed to investigate the relationship between soluble P-selectin, a marker of platelet activation, and von Willebrand factor (vWF) on exposure to hypoxia.
View Article and Find Full Text PDFIdiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease diagnosed by right heart catheterisation and the exclusion of other forms of pulmonary arterial hypertension, producing a heterogeneous population with varied treatment response. Here we show unsupervised machine learning identification of three major patient subgroups that account for 92% of the cohort, each with unique whole blood transcriptomic and clinical feature signatures. These subgroups are associated with poor, moderate, and good prognosis.
View Article and Find Full Text PDFBackground: Pulmonary arterial hypertension (PAH) is a rare but life shortening disease, the diagnosis of which is often delayed, and requires an invasive right heart catheterisation. Identifying diagnostic biomarkers may improve screening to identify patients at risk of PAH earlier and provide new insights into disease pathogenesis. MicroRNAs are small, non-coding molecules of RNA, previously shown to be dysregulated in PAH, and contribute to the disease process in animal models.
View Article and Find Full Text PDFObjective: To determine whether global reduction of CD68 (cluster of differentiation) macrophages impacts the development of experimental pulmonary arterial hypertension (PAH) and whether this reduction affects the balance of pro- and anti-inflammatory macrophages within the lung. Additionally, to determine whether there is evidence of an altered macrophage polarization in patients with PAH. Approach and Results: Macrophage reduction was induced in mice via doxycycline-induced CD68-driven cytotoxic diphtheria toxin A chain expression (macrophage low [MacLow] mice).
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is a rare but fatal disease. Current treatments increase life expectancy but have limited impact on the progressive pulmonary vascular remodelling that drives PAH. Osteoprotegerin (OPG) is increased within serum and lesions of patients with idiopathic PAH and is a mitogen and migratory stimulus for pulmonary artery smooth muscle cells (PASMCs).
View Article and Find Full Text PDFBackground: Aldosterone is a mineralocorticoid hormone critically involved in arterial blood pressure regulation. Although pharmacological aldosterone antagonism reduces mortality and morbidity among patients with severe left-sided heart failure, the contribution of aldosterone to the pathobiology of pulmonary arterial hypertension (PAH) and right ventricular (RV) heart failure is not fully understood.
Methods: The effects of Eplerenone (0.
Idiopathic pulmonary arterial hypertension (IPAH) is increasingly diagnosed in elderly patients who also have an increased risk of co-morbid atherosclerosis. Apolipoprotein E-deficient (ApoE) mice develop atherosclerosis with severe PAH when fed a high-fat diet (HFD) and have increased levels of endothelin (ET)-1. ET-1 receptor antagonists (ERAs) are used for the treatment of PAH but less is known about whether ERAs are beneficial in atherosclerosis.
View Article and Find Full Text PDFBone morphogenetic protein receptor type 2 (BMPR2) mutations are present in patients with heritable and idiopathic pulmonary arterial hypertension (PAH). Circulating levels of interleukin-1 (IL-1) are raised in patients and animal models. Whether interplay between BMP and IL-1 signaling can explain the local manifestation of PAH in the lung remains unclear.
View Article and Find Full Text PDFLoss of the growth-suppressive effects of bone morphogenetic protein (BMP) signaling has been demonstrated to promote pulmonary arterial endothelial cell dysfunction and induce pulmonary arterial smooth muscle cell (PASMC) proliferation, leading to the development of pulmonary arterial hypertension (PAH). MicroRNAs (miRs) mediate higher order regulation of cellular function through coordinated modulation of mRNA targets; however, miR expression is altered by disease development and drug therapy. Here, we examined treatment-naive patients and experimental models of PAH and identified a reduction in the levels of miR-140-5p.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the progressive narrowing and occlusion of small pulmonary arteries. Current therapies fail to fully reverse this vascular remodeling. Identifying key pathways in disease pathogenesis is therefore required for the development of new-targeted therapeutics.
View Article and Find Full Text PDFWe previously reported that osteoprotegerin (OPG) is regulated by pathways associated with pulmonary arterial hypertension (PAH), and is present at elevated levels within pulmonary vascular lesions and sera from patients with idiopathic PAH (IPAH). Since OPG is a naturally secreted protein, we investigated the relationship between serum OPG and disease severity and outcome in patients with IPAH and animal models. OPG mRNA expression was measured in pulmonary artery smooth muscle cells (PASMC) from pulmonary arteries of patients with and without IPAH.
View Article and Find Full Text PDFInflammatory mechanisms are proposed to play a significant role in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have described PAH in fat-fed apolipoprotein E knockout (ApoE(-/-)) mice. We have reported that signaling in interleukin-1-receptor-knockout (IL-1R1(-/-)) mice leads to a reduction in diet-induced systemic atherosclerosis.
View Article and Find Full Text PDF