Nicotinamide nucleotide transhydrogenase (TH) is an enzyme complex in animal mitochondria and bacteria that utilizes the electrochemical proton gradient across membranes to drive the production of NADPH. The enzyme plays an important role in maintaining the redox balance of cells with implications in aging and a number of human diseases. TH exists as a homodimer with each protomer containing a proton-translocating transmembrane domain and two soluble nucleotide binding domains that mediate hydride transfer between NAD(H) and NADP(H).
View Article and Find Full Text PDFThe nicotinamide nucleotide transhydrogenase (TH) is an integral membrane enzyme that uses the proton-motive force to drive hydride transfer from NADH to NADP in bacteria and eukaryotes. Here we solved a 2.2-Å crystal structure of the TH transmembrane domain (Thermus thermophilus) at pH 6.
View Article and Find Full Text PDFThe membrane protein transhydrogenase in animal mitochondria and bacteria couples reduction of NADP⁺ by NADH to proton translocation. Recent X-ray data on Thermus thermophilus transhydrogenase indicate a significant difference in the orientations of the two dIII components of the enzyme dimer (Leung et al., 2015).
View Article and Find Full Text PDFNADPH/NADP(+) (the reduced form of NADP(+)/nicotinamide adenine dinucleotide phosphate) homeostasis is critical for countering oxidative stress in cells. Nicotinamide nucleotide transhydrogenase (TH), a membrane enzyme present in both bacteria and mitochondria, couples the proton motive force to the generation of NADPH. We present the 2.
View Article and Find Full Text PDFMammalian artificial chromosomes (MACs) provide a means to introduce large payloads of genetic information into the cell in an autonomously replicating, non-integrating format. Unique among MACs, the mammalian satellite DNA-based Artificial Chromosome Expression (ACE) can be reproducibly generated de novo in cell lines of different species and readily purified from the host cells' chromosomes. Purified mammalian ACEs can then be re-introduced into a variety of recipient cell lines where they have been stably maintained for extended periods in the absence of selective pressure.
View Article and Find Full Text PDFAccumulation of inflammatory microglia in Alzheimer's senile plaques is a hallmark of the innate response to beta-amyloid fibrils and can initiate and propagate neurodegeneration characteristic of Alzheimer's disease (AD). The molecular mechanism whereby fibrillar beta-amyloid activates the inflammatory response has not been elucidated. CD36, a class B scavenger receptor, is expressed on microglia in normal and AD brains and binds to beta-amyloid fibrils in vitro.
View Article and Find Full Text PDFIFN-gamma-inducible protein 10 (IP-10, CXCL10), a chemokine secreted from cells stimulated with type I and II IFNs and LPS, is a chemoattractant for activated T cells. Expression of IP-10 is seen in many Th1-type inflammatory diseases, where it is thought to play an important role in recruiting activated T cells into sites of tissue inflammation. To determine the in vivo function of IP-10, we constructed an IP-10-deficient mouse (IP-10(-/-)) by targeted gene disruption.
View Article and Find Full Text PDF