Publications by authors named "Josephine L Harries"

Electronically complementary, low molecular weight polymers that self-assemble through tunable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly colored materials as a result of charge-transfer absorption bands in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation.

View Article and Find Full Text PDF

Four new complex salts trans[RuIICl(pdma)2LA][PF6]n [pdma = 1,2-phenylenebis(dimethylarsine); LA = 1,4-bis[E-2-(4-pyridyl)ethenyl]benzene (bpvb), n = 1, 1; LA = N-methyl-1,4-bis(E-2-(4-pyridyl)ethenyl)benzene (Mebpvb+), n = 2, 2; LA = N-phenyl-1,4-bis(E-2-(4-pyridyl)ethenyl)benzene (Phbpvb+), n = 2, 3; LA = N-(2-pyrimidyl)-1,4-bis(E-2-(4-pyridyl)ethenyl)benzene (Pymbpvb+), n = 2, 4] have been prepared. The electronic absorption spectra of 1-4 display intense, visible metal-to-ligand charge-transfer (MLCT) bands, with lambda(max) values in the range 432-474 nm in acetonitrile. Intense intraligand charge-transfer (ILCT) bands due to LA are also observed, with lambda(max) values in the range 350-416 nm.

View Article and Find Full Text PDF

In this article, we describe a series of complex salts in which electron-rich {Fe(II)(CN)(5)}(3)(-) centers are coordinated to pyridyl ligands with electron-accepting N-methyl/aryl-pyridinium substituents. These compounds have been characterized by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses have been determined by using hyper-Rayleigh scattering (HRS) at 1064 nm, and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) bands.

View Article and Find Full Text PDF

We have prepared a number of new dipolar complexes containing ethynyl or buta-1,3-diynyl units linking electron-rich {Ru(II)(NH3)5}2+, trans-{Ru(II)(NH3)4L}+ (L = pyridine or N-methylimidazole), or trans-{Ru(II)Cl(pdma)2}+ [pdma = 1,2-phenylenebis(dimethylarsine)] centers to pyridinium electron acceptors. In acetonitrile solutions at 295 K, the new complexes display unusual blue-shifting of their metal-to-ligand charge-transfer (MLCT) bands as the conjugation is extended, in a fashion similar to that of the corresponding ethenyl systems. Hyper-Rayleigh scattering (HRS) and Stark spectroscopic measurements provide direct and indirect estimates of static first hyperpolarizabilities beta0, and both the linear and nonlinear optical (NLO) properties are temperature- and medium-dependent.

View Article and Find Full Text PDF

Six new complex salts trans-[Ru(II)Cl(pdma)2L][PF6]n [pdma = 1,2-phenylenebis(dimethylarsine); L = (E,E,E)-1,6-bis(4-pyridyl)hexa-1,3,5-triene (bph), n= 1, 5; L =N-methyl-4-[(E)-2-(4-pyridyl)ethenyl]pyridinium (Mebpe+), n= 2, 7; L =N-methyl-4-[(E,E)-4-(4-pyridyl)buta-1,3-dienyl]pyridinium (Mebpb+), n= 2, 8; L =N-methyl-4-[(E,E,E)-6-(4-pyridyl)hexa-1,3,5-trienyl]pyridinium (Mebph+), n= 2, 9; L = bis(4-pyridyl)acetylene (bpa), n= 1, 10; L =N-methyl-4-[2-(4-pyridyl)ethynyl]pyridinium (Mebpa+), n= 2, 11] have been prepared. The electronic absorption spectra of 5 and 7-11 display intense, visible metal-to-ligand charge-transfer (MLCT) bands, with lambdamax values in the range 434-492 nm in acetonitrile. Cyclic voltammetric studies reveal reversible Ru(III/II) waves with E(1/2) values in the range 1.

View Article and Find Full Text PDF