Publications by authors named "Josephine Groslambert"

The recognition that DNA can be ADP ribosylated provides an unexpected regulatory level of how ADP-ribosylation contributes to genome stability, epigenetics and immunity. Yet, it remains unknown whether DNA ADP-ribosylation (DNA-ADPr) promotes genome stability and how it is regulated. Here, we show that telomeres are subject to DNA-ADPr catalyzed by PARP1 and removed by TARG1.

View Article and Find Full Text PDF

PARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription, and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. We show that PARP14 is a dual-function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates.

View Article and Find Full Text PDF

The timely removal of ADP-ribosylation is crucial for efficient DNA repair. However, much remains to be discovered about ADP-ribosylhydrolases. Here, we characterize the physiological role of TARG1, an ADP-ribosylhydrolase that removes aspartate/glutamate-linked ADP-ribosylation.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are recruited and activated by DNA damage, resulting in ADP-ribosylation at numerous sites, both within PARP1 itself and in other proteins. Several PARP1 and PARP2 inhibitors are currently employed in the clinic or undergoing trials for treatment of various cancers. These drugs act primarily by trapping PARP1 on damaged chromatin, which can lead to cell death, especially in cells with DNA repair defects.

View Article and Find Full Text PDF

ADP-ribosylation is a chemical modification of macromolecules found across all domains of life and known to regulate a variety of cellular processes. Notably, it has a well-established role in the DNA damage response. While it was historically known as a post-translational modification of proteins, recent studies have shown that nucleic acids can also serve as substrates of reversible ADP-ribosylation.

View Article and Find Full Text PDF
Article Synopsis
  • ARH3 and PARG are key enzymes that reverse ADP-ribosylation in vertebrates, but their in vivo roles are not well understood.
  • In experiments with ARH3-deficient cells, it was found that mono(ADP-ribose) modifications (MAR) are maintained on chromatin during the cell cycle, while poly(ADP-ribose) modifications (PAR) are harmful and disrupt active transcription.
  • The study also uncovered a synthetic lethal interaction between ARH3 and PARG, suggesting that loss of ARH3 contributes to resistance against PARP inhibitors, which could inform cancer therapies, and indicated that ARH3 deficiency in patients may lead to harmful PAR levels that could be
View Article and Find Full Text PDF