Publications by authors named "Josephine Groot"

To achieve a comprehensive understanding of spontaneous brain dynamics in humans, acquisition of intrinsic activity across both cortical and subcortical regions is necessary. Here we present advanced whole-brain, resting-state functional magnetic resonance imaging (rs-fMRI) data acquired at 7 Tesla with 1.5 mm isotropic voxel resolution.

View Article and Find Full Text PDF

Decades of research have greatly improved our understanding of intrinsic human brain organization in terms of functional networks and the transmodal hubs within the cortex at which they converge. However, substrates of multinetwork integration in the human subcortex are relatively uncharted. Here, we leveraged recent advances in subcortical atlasing and ultra-high field (7 T) imaging optimized for the subcortex to investigate the functional architecture of 14 individual structures in healthy adult males and females with a fully data-driven approach.

View Article and Find Full Text PDF

In order to further our understanding of brain function and the underlying networks, more advanced diffusion weighted magnetic resonance imaging (DWI MRI) data are essential. Here we present freely available high-resolution multi-shell multi-directional 3 Tesla (T) DWI MRI data as part of the 'Amsterdam Ultra-high field adult lifespan database' (AHEAD). The 3T DWI AHEAD dataset include 1.

View Article and Find Full Text PDF

When the human mind wanders, it engages in episodes during which attention is focused on self-generated thoughts rather than on external task demands. Although the sustained attention to response task is commonly used to examine relationships between mind wandering and executive functions, limited executive resources are required for optimal task performance. In the current study, we aimed to investigate the relationship between mind wandering and executive functions more closely by employing a recently developed finger-tapping task to monitor fluctuations in attention and executive control through task performance and periodical experience sampling during concurrent functional magnetic resonance imaging (fMRI) and pupillometry.

View Article and Find Full Text PDF

7 Tesla (7T) magnetic resonance imaging holds great promise for improved visualization of the human brain for clinical purposes. To assess whether 7T is superior regarding localization procedures of small brain structures, we compared manual parcellations of the red nucleus, subthalamic nucleus, substantia nigra, globus pallidus interna and externa. These parcellations were created on a commonly used clinical anisotropic clinical 3T with an optimized isotropic (o)3T and standard 7T scan.

View Article and Find Full Text PDF

magnetic resonance imaging (MRI) studies on the human brain are of great interest for the validation of MRI. It facilitates a link between functional and anatomical information available from MRI and neuroanatomical knowledge available from histology/immunocytochemistry. However, linking and MRI to microscopy techniques poses substantial challenges.

View Article and Find Full Text PDF

Mind wandering reflects the shift in attentional focus from task-related cognition driven by external stimuli toward self-generated and internally-oriented thought processes. Although such task-unrelated thoughts (TUTs) are pervasive and detrimental to task performance, their underlying neural mechanisms are only modestly understood. To investigate TUTs with high spatial and temporal precision, we simultaneously measured fMRI, EEG, and pupillometry in healthy adults while they performed a sustained attention task with experience sampling probes.

View Article and Find Full Text PDF

Normative databases allow testing of novel hypotheses without the costly collection of magnetic resonance imaging (MRI) data. Here we present the Amsterdam Ultra-high field adult lifespan database (AHEAD). The AHEAD consists of 105 7 Tesla (T) whole-brain structural MRI scans tailored specifically to imaging of the human subcortex, including both male and female participants and covering the entire adult life span (18-80 yrs).

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that is frequently used to study cortical excitability changes and their impact on cognitive functions in humans. While most stimulators are capable of operating in double-blind mode, the amount of discomfort experienced during tDCS may break blinding. Therefore, specifically designed sham stimulation protocols are being used.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has been proposed to be able to modulate different cognitive functions. However, recent meta-analyses conclude that its efficacy is still in question. Recently, an increase in subjects' propensity to mind-wander has been reported as a consequence of anodal stimulation of the left dorsolateral prefrontal cortex (Axelrod et al.

View Article and Find Full Text PDF

Non-invasive neuroimaging techniques provide a wide array of possibilities to study human brain function. A number of approaches are available that improve our understanding of the anatomical location of brain activation patterns, including the development of probabilistic conversion tools to register individual data to population based neuroanatomical templates. Two elegant examples were published by Horn et al.

View Article and Find Full Text PDF