Publications by authors named "Josephine Axis"

Confluent populations of the epithelial cell line, MDCK II, develop circumferential tight junctions joining adjacent cells to create a barrier to the paracellular movement of solutes and water. Treatment of MDCK II cell populations from the apical surface with 1 mM Na-caprate increased permeability to macromolecules (Leak Pathway) without increasing monolayer disruption or cell death. Graphical analysis of the apparent permeability versus solute Stokes radius for a size range of fluorescein-dextran species indicates apical 1 mM Na-caprate enhances Leak Pathway permeability by increasing the number of Leak Pathway openings without significantly affecting opening size.

View Article and Find Full Text PDF

Although many studies have reported differences in epithelial paracellular Leak Pathway permeability following genetic manipulations and treatment with various agents, the basis for these differences remains mostly unclear. Two primary mechanisms which could underlie differences in Leak Pathway permeability are differences in the density of Leak Pathway openings and differences in the opening size. Using a computational approach, we demonstrate that these two possibilities can be readily distinguished graphically by comparing the apparent paracellular permeabilities of a size panel of solutes measured across different cell layers.

View Article and Find Full Text PDF

The epithelial cell tight junction structure is the site of the transepithelial movement of solutes and water between epithelial cells (paracellular permeability). Paracellular permeability can be divided into two distinct pathways, the Pore Pathway mediating the movement of small ions and solutes and the Leak Pathway mediating the movement of large solutes. Claudin proteins form the basic paracellular permeability barrier and mediate the movement of small ions and solutes via the Pore Pathway.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) increases paracellular permeability of Madin-Darby canine kidney (MDCK) cells, but the mechanism mediating this effect remains unclear. Treatment of MDCK cells with HO activated ERK 1/2. Inhibition of ERK 1/2 activation blocked the ability of HO to increase paracellular permeability.

View Article and Find Full Text PDF

The ability of hydrogen peroxide (H2O2) to increase paracellular permeability of renal epithelial cell monolayers was examined and the role of occludin in this regulation was investigated. H2O2 treatment increased the paracellular movement of calcein, a marker for the leak pathway permeability, across monolayers of two renal epithelial cell lines, MDCK and LLC-PK1, in a concentration-dependent manner. At the same concentrations, H2O2 did not alter transepithelial resistance (TER) nor increase cell death.

View Article and Find Full Text PDF

Paracellular permeability is mediated by the epithelial cell tight junction. Studies in intestinal and other epithelia have suggested that the activity of src family kinases (SFKs) increases epithelial paracellular permeability through its action on the tight junction protein, occludin, but the involvement of SFKs and occludin in regulation of renal epithelial paracellular permeability is unclear. In this study, the role of SFKs in regulation of renal epithelial paracellular permeability and the involvement of occludin protein in this regulatory event was examined in two renal epithelial cell lines, LLC-PK(1) (proximal tubule-like) and MDCK (distal tubule-like).

View Article and Find Full Text PDF