The orphan G-protein-coupled receptor GPR139 is highly expressed in the habenula, a small brain nucleus that has been linked to depression, schizophrenia (SCZ), and substance-use disorder. High-throughput screening and a medicinal chemistry structure-activity relationship strategy identified a novel series of potent and selective benzotriazinone-based GPR139 agonists. Herein, we describe the chemistry optimization that led to the discovery and validation of multiple potent and selective in vivo GPR139 agonist tool compounds, including our clinical candidate TAK-041, also known as NBI-1065846 (compound ).
View Article and Find Full Text PDFAxl has been a target of interest in the oncology field for several years based on its role in various oncogenic processes. To date, no wild-type Axl crystal structure has been reported. Herein, we describe the structure-based optimization of a novel chemotype of Axl inhibitors, 1H-imidazole-2-carboxamide, using a mutated kinase homolog, Mer(I650M), as a crystallographic surrogate.
View Article and Find Full Text PDFAssay Drug Dev Technol
October 2006
Cell-based assays have become an integral part of the preclinical drug development process. Recently, noninvasive label-free cell-based assay technologies have taken center stage, offering important and distinct advantages over and in addition to traditional label-based endpoint assays. Dynamic monitoring of live cells, the preclusion of label, and kinetics are some of the fundamental features of cell-based label-free technologies.
View Article and Find Full Text PDFAssay Drug Dev Technol
October 2006
In this paper we have explored the utility of the real-time cell electronic sensing (RTCES, ACEA Biosciences Inc., San Diego, CA) system for monitoring the quality of live cells in cell-based assays as well as for assay development. We have demonstrated that each cell type displays unique growth kinetic profiles that provide a quantitative account of cell behavior and can be used as a diagnostic tool for cellular quality control.
View Article and Find Full Text PDFKinases are the 2nd largest group of therapeutic targets in the human genome. In this article, a label-free and real-time cell-based receptor tyrosine kinase (RTK) assay that addresses limitation of existing kinase assays and can be used for high-throughput screening and lead optimization studies was validated and characterized. Using impedance, growth factor-induced morphological changes were quantitatively assessed in real time and used as a measure of RTK activity.
View Article and Find Full Text PDFObjective: To perform a large-scale association analysis of single-nucleotide polymorphisms (SNPs) in patients with radiographically defined osteoarthritis (OA) of the knee.
Methods: We examined >25,000 SNPs located within approximately 14,000 genes for associations with radiographically defined knee OA, using polymerase chain reaction and MassExtend amplification techniques. Allele frequencies were estimated initially in DNA pools from 335 female patients with knee OA and 335 asymptomatic and radiographically negative female control subjects.
G protein-coupled receptors (GPCRs) constitute important targets for drug discovery against a wide range of ailments including cancer, inflammatory, and cardiovascular diseases. Efforts are underway to screen selective modulators of GPCRs and also to deorphanize GPCRs with unidentified natural ligands. Most GPCR-based cellular screens depend on labeling or recombinant expression of receptor or reporter proteins, which may not capture the true physiology or pharmacology of the GPCRs.
View Article and Find Full Text PDFCellular interaction with and adhesion on different biological surfaces is a dynamic and integrated process requiring the participation of specialized cell surface receptors, structural proteins, signaling proteins, and the cellular cytoskeleton. In this report, the authors describe a label-free and real-time method for measuring and monitoring cell adhesion on special microplates integrated with electronic cell sensor arrays. These plates were used in conjunction with the real-time cell electronic sensing (RT-CES) system to dynamically and quantitatively monitor the specific interaction of fibroblasts with extracellular matrix (ECM) proteins and compared with standard adhesion techniques.
View Article and Find Full Text PDFA genome-wide case-control association study done in our laboratory has identified a single nucleotide polymorphism located in RAD21 as being significantly associated with breast cancer susceptibility. RAD21 is believed to function in sister chromatid alignment as part of the cohesin complex and also in double-strand break (DSB) repair. Following our initial finding, expression studies revealed a 1.
View Article and Find Full Text PDF