Essentially all women are exposed to polycyclic aromatic hydrocarbons (PAHs), formed during incomplete combustion of organic materials, including fossil fuels, wood, foods, and tobacco. PAHs are ovarian toxicants in rodents, and cigarette smoking is associated with reproductive abnormalities in women. Biomonitoring of hydroxylated PAH (OH-PAH) metabolites in urine provides an integrated measure of exposure to PAHs via multiple routes and has been used to characterize exposure to PAHs in humans.
View Article and Find Full Text PDFExposures to environmental pollutants in utero may increase the risk of adverse health effects. We measured the concentrations of 59 potentially harmful chemicals in 77 maternal and 65 paired umbilical cord blood samples collected in San Francisco during 2010-2011, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), hydroxylated PBDEs (OH-PBDEs), and perfluorinated compounds (PFCs) in serum and metals in whole blood. Consistent with previous studies, we found evidence that concentrations of mercury (Hg) and lower-brominated PBDEs were often higher in umbilical cord blood or serum than in maternal samples (median cord:maternal ratio > 1), while for most PFCs and lead (Pb), concentrations in cord blood or serum were generally equal to or lower than their maternal pair (median cord:maternal ratio ≤ 1).
View Article and Find Full Text PDFFirefighters are at increased risk for exposure to toxic chemicals compared to the general population, but few studies of this occupational group have included biomonitoring. We measured selected phenolic chemicals in urine collected from 101 Southern California firefighters. The analytes included bisphenol A (BPA), triclosan, benzophenone-3 (BP-3), and parabens, which are common ingredients in a range of consumer products.
View Article and Find Full Text PDFIn order to better distinguish the different toxic inorganic and organic forms of arsenic (As) exposure in individuals, we have developed and validated a simple and robust analytical method for determining the following six As species in human urine: arsenous (III) acid (As-III), As (V) acid, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine (AsB), and arsenocholine. In this method, human urine is diluted using a pH 5.8 buffer, separation is performed using an anion exchange column with isocratic HPLC, and detection is achieved using inductively coupled plasma-MS.
View Article and Find Full Text PDF