Publications by authors named "Josephina Werner"

Previous studies have shown that the water-air interface and a number of water molecule layers just below it, the surface region, have significantly different physico-chemical properties, such as lower relative permittivity and density, than bulk water. The properties in the surface region of water favor weakly hydrated species as neutral molecules, while ions requiring strong hydration and shielding of their charge are disfavored. In this study the equilibria NH(aq) + RCOO(aq) ⇌ NH(aq) + RCOOH(aq) are investigated for R = CH, n = 0-8, as open systems, where ammonia and small carboxylic acids in the gas phase above the water surface are removed from the system by a gentle controlled flow of nitrogen to mimic the transport of volatile compounds from water droplets into air.

View Article and Find Full Text PDF

Surface affinity, orientation and ion pairing are investigated in mixed and single solute systems of aqueous sodium hexanoate and hexylammonium chloride. The surface sensitive X-ray photoelectron spectroscopy technique has been used to acquire the experimental results, while the computational data have been calculated using molecular dynamics simulations. By comparing the single solute solutions with the mixed one, we observe a non-linear surface enrichment and reorientation of the organic ions with their alkyl chains pointing out of the aqueous surface.

View Article and Find Full Text PDF

Acid-base equilibria of carboxylic acids and alkyl amines in the aqueous surface region were studied using surface-sensitive X-ray photoelectron spectroscopy and molecular dynamics simulations. Solutions of these organic compounds were examined as a function of pH, concentration and chain length to investigate the distribution of acid and base form in the surface region as compared to the aqueous bulk. Results from these experiments show that the neutral forms of the studied acid-base pairs are strongly enriched in the aqueous surface region.

View Article and Find Full Text PDF

Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (NaSO). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots.

View Article and Find Full Text PDF

Atmospheric particulate matter is one of the main factors governing the Earth's radiative budget, but its exact effects on the global climate are still uncertain. Knowledge on the molecular-scale surface phenomena as well as interactions between atmospheric organic and inorganic compounds is necessary for understanding the role of airborne nanoparticles in the Earth system. In this work, surface composition of aqueous model systems containing succinic acid and sodium chloride or ammonium sulfate is determined using a novel approach combining X-ray photoelectron spectroscopy, surface tension measurements and thermodynamic modeling.

View Article and Find Full Text PDF

The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.

View Article and Find Full Text PDF

The acid-base speciation of surface-active carboxylate ions in the surface region of aqueous solutions was studied with synchrotron-radiation-based photoelectron spectroscopy. The protonated form was found at an extraordinarily large fraction compared to that expected from the bulk pH. When adding salts containing the weak acid NH4(+) to the solution, the fraction of the acidic form at the surface increases, and to a much greater extent than expected from the bulk pH of the solution.

View Article and Find Full Text PDF

The water-vapor interface of aqueous solutions of succinic acid, where pH values and bulk concentrations were varied, has been studied using surface sensitive X-ray photoelectron spectroscopy (XPS) and molecular dynamics (MD) simulations. It was found that succinic acid has a considerably higher propensity to reside in the aqueous surface region than its deprotonated form, which is effectively depleted from the surface due to the two strongly hydrated carboxylate groups. From both XPS experiments and MD simulations a strongly increased concentration of the acid form in the surface region compared to the bulk concentration was found and quantified.

View Article and Find Full Text PDF

Through the combination of surface sensitive photoelectron spectroscopy and molecular dynamics simulation, the relative surface propensities of guanidinium and ammonium ions in aqueous solution are characterized. The fact that the N 1s binding energies differ between these two species was exploited to monitor their relative surface concentration through their respective photoemission intensities. Aqueous solutions of ammonium and guanidinium chloride, and mixtures of these salts, have been studied in a wide concentration range, and it is found that the guanidinium ion has a greater propensity to reside at the aqueous surface than the ammonium ion.

View Article and Find Full Text PDF