Publications by authors named "Joseph Zyss"

With the help of a theoretical model and finite-difference time-domain (FDTD) simulations based on the hydrodynamic-Maxwell model, we examine the effect of difference-frequency generation (DFG) in an array of L-shaped metal nanoparticles (MNPs) characterized by intrinsic plasmonic nonlinearity. The outcomes of the calculations reveal the spectral interplay between gain and loss in the vicinity of the fundamental frequency of the localized surface plasmon resonances. Subsequently, we identify different array thicknesses and pumping regimes facilitating parametric amplification and spontaneous parametric downconversion.

View Article and Find Full Text PDF

A long-term reusable sensor that provides the opportunity to easily regenerate the active surface and minimize the occurrence of undesired absorption events is an appealing solution that helps to cut down the costs and improve the device performances. Impressive advances have been made in the past years concerning the development of novel cutting-edge sensors, but the reusability can currently represent a challenge. Direct shielding of the sensor surface is not always applicable, because it can impact the device performance.

View Article and Find Full Text PDF

We report on experiments with Möbius strip microlasers, which were fabricated with high optical quality by direct laser writing. A Möbius strip, i.e.

View Article and Find Full Text PDF

An inverted pyramidal metasurface was designed, fabricated, and studied at the nanoscale level for the development of a label-free pathogen detection on a chip platform that merges nanotechnology and surface-enhanced Raman scattering (SERS). Based on the integration and synergy of these ingredients, a virus immunoassay was proposed as a relevant proof of concept for very sensitive detection of hepatitis A virus, for the first time to our best knowledge, in a very small volume (2 μL), without complex signal amplification, allowing to detect a minimal virus concentration of 13 pg/mL. The proposed work aims to develop a high-flux and high-accuracy surface-enhanced Raman spectroscopy (SERS) nanobiosensor for the detection of pathogens to provide an effective method for early and easy water monitoring, which can be fast and convenient.

View Article and Find Full Text PDF

We investigate second harmonic generation (SHG) from hexagonal periodic arrays of triangular nano-holes of aluminum using a self-consistent methodology based on the hydrodynamics-Maxwell-Bloch approach. It is shown that angular polarization patterns of the far-field second harmonic response abide to threefold symmetry constraints on tensors. When a molecular layer is added to the system and its parameters are adjusted to achieve the strong coupling regime between a localized plasmon mode and molecular excitons, Rabi splitting is observed from the occurrence of both single- and two-photon transition peaks within the SHG power spectrum.

View Article and Find Full Text PDF

We develop scenarios for orientational ordering of an in-plane system of small flat octupolar molecules at the low-concentration limit, aiming towards nonlinear-optical (NLO) applications at room temperatures. The octupoles interact with external electric poling fields and intermolecular interactions are neglected. Simple statistical-mechanics models are used to analyze the orientational order in the very weak poling limit, sufficient for retrieving the NLO signals owing to the high sensitivity of NLO detectors and measurement chains.

View Article and Find Full Text PDF

Short peptides made from repeating units of phenylalanine self-assemble into a remarkable variety of micro- and nanostructures including tubes, tapes, spheres, and fibrils. These bio-organic structures are found to possess striking mechanical, electrical, and optical properties, which are rarely seen in organic materials, and are therefore shown useful for diverse applications including regenerative medicine, targeted drug delivery, and biocompatible fluorescent probes. Consequently, finding new optical properties in these materials can significantly advance their practical use, for example, by allowing new ways to visualize, manipulate, and utilize them in new, in vivo, sensing applications.

View Article and Find Full Text PDF
Article Synopsis
  • Fast and ultrasensitive methods for detecting bacterial pathogens are crucial for health care, and surface-enhanced Raman scattering (SERS) offers a promising solution with improved accuracy and simplicity compared to older methods.
  • This study presents SERS nanosensors made from multilayer octupolar nanostructures that enhance sensitivity and selectivity for detecting pathogens, specifically through the use of bacteriophages and self-assembled monolayers.
  • The research achieved a high detection sensitivity at the single-cell level, showcasing a significant intensity increase when detecting the Brucella bacterium, enabling rapid identification in under an hour without complex preparation.
View Article and Find Full Text PDF

The unique optical properties of arrays of metallic nanoparticles are of great interest for many applications such as in optical data storage, sensing applications, optoelectronic devices or as platforms to increase the detection limit in spectroscopic measurements. Nonlinear optical phenomena can also be altered by metallic nanostructures opening new possible applications. In this work, arrays composed of non-centrosymmetric individual structures with three fold axial symmetry made of gold are designed and fabricated using electron beam lithography.

View Article and Find Full Text PDF

We present a nanoscale electro-optic imaging method allowing access to the phase response, which is not amenable to classical second-harmonic generation microscopy. This approach is used to infer the vectorial orientation of single domain ferroelectric nanocrystals, based on polarization-resolved Pockels microscopy. The electro-optic phase response of KTP nanoparticles yields the full orientation in the laboratory frame of randomly dispersed single nanoparticles, together with their electric polarization dipole.

View Article and Find Full Text PDF

We use polarization-resolved two-photon microscopy to investigate second harmonic generation (SHG) from individual assemblies of site-controlled nano-pyramidal recess templates covered with silver films. We demonstrate the effect of the surface plasmon polaritons (SPPs) at fundamental and second-harmonic frequencies on the effective second order susceptibility tensor as a function of pyramid arrangement and inter-pyramid distance. These results open new perspectives for the application of SHG microscopy as a sensitive probe of coherently excited SPPs, as well as for the design of new plasmonic nanostructure assemblies with tailored nonlinear optical properties.

View Article and Find Full Text PDF

Cuboid-shaped organic microcavities containing a pyrromethene laser dye and supported upon a photonic crystal have been investigated as an approach to reducing the lasing threshold of the cavities. Multiphoton lithography facilitated fabrication of the cuboid cavities directly on the substrate or on the decoupling structure, while similar structures were fabricated on the substrate by UV lithography for comparison. Significant reduction of the lasing threshold by a factor of ~30 has been observed for cavities supported by the photonic crystal relative to those fabricated on the substrate.

View Article and Find Full Text PDF

The octupolar cube, a Td symmetry cube presenting alternating charges at its corners, is the generic point charge template of any octupolar molecule. So far, transposition into real molecular structures has yet to be achieved. We report here a first step toward the elaboration of fully cubic octupolar architectures.

View Article and Find Full Text PDF

We show how a single gold nanorod can serve as a multifunctional probe in an organized DNA matrix. Polarization analysis of two-photon luminescence excited with a femtosecond laser enables imaging of the orientation of a single nanorod, which reports the orientation of DNA strands. Carefully controlled photoinduced heating by the same laser is able to degrade the DNA matrix in a highly localized volume.

View Article and Find Full Text PDF

The synthesis, luminescence, and nonlinear optical properties of a new series of Ir(ppy)3 (ppy = 2-phenylpyridine) complexes incorporating π-extended vinyl-aryl substituents at the para positions of their pyridine rings are reported. Appropriate substitution of the pyridyl rings allows the tuning of the luminescence properties and the second-order nonlinear optical response of this unusual family of three-dimensional chromophores. Theoretical calculations were performed to evaluate the dipole moments, to gain insight into the electronic structure, and to rationalize the observed optical properties of the investigated complexes.

View Article and Find Full Text PDF

Appropriate functionalization of the cyclometalated ligand, L, and the choice of the ancillary ligand, X, allows the dipolar second-order nonlinear optical response of luminescent [PtLX] complexes--in which L is an N^C^N-coordinated 1,3-di(2-pyridyl)benzene ligand and X is a monodentate halide or acetylide ligand--to be controlled. The complementary use of electric-field-induced second-harmonic (EFISH) generation and harmonic light scattering (HLS) measurements demonstrates how the quadratic hyperpolarizability of this appealing family of multifunctional chromophores, characterized by a good transparency throughout much of the visible region, is dominated by an octupolar contribution.

View Article and Find Full Text PDF

Spots of second harmonic generation (SHG) are produced from nanopatterned sub-micrometer areas of nonlinear polymer media. Information is written by using a biased-AFM tip, a highly nonlinear polymer (poly(methyl metha-acrylate)-co-Disperse Red 1), and a novel "floating-tip nanolithography" (FTN) technique. Dipoles are oriented and aligned at the nanoscale under the biased-AFM tip, resulting in SHG production.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the nonlinear optical properties and depolarization ratios of cation-π complexes formed by tropyliumtetrafluoroborate and methyl-substituted benzenes using polarized hyper-Rayleigh scattering measurements.
  • Findings revealed that the observed depolarization ratios (D and D') were significantly lower than expected, with D values ranging from 1.36 to 1.46 and D' from 1.62 to 1.72, influenced by the number of methyl groups.
  • Further calculations showed that the presence of the BF(4) anion dramatically affected the optical properties, aligning computational results with experimental data when arranged in a trigonal symmetry, highlighting the anion's unexpected importance
View Article and Find Full Text PDF

The dipolar and octupolar contributions of the second order nonlinear optical properties of [(4'-(C(6)H(4)-p-D)-2,2':6',2''-terpyridine)-Ru-(4'-(C(6)H(4)-p-A)-2,2':6',2''-terpyridine)]Y(2) heteroleptic complexes (D and A are donor and acceptor groups, respectively), and related free terpyridines and homoleptic complexes, have been obtained by means of a comprehensive combination of Electric Field Induced Second Harmonic generation, Third Harmonic Generation, and Harmonic Light Scattering measurements. These results evidence how a metal can act as a bridge between two π-delocalized terpyridine moieties bearing a D and an A group, respectively, leading to a large quadratic hyperpolarizability hugely dominated by the octupolar contribution.

View Article and Find Full Text PDF

The concept of octupolar molecules has considerably enlarged the engineering of second-order nonlinear optical materials by giving access to 2D and 3D architectures. However, if the archetype of octupolar symmetry is a cube with alternating donor and acceptor groups at the corners, no translation of this ideal structure into a real molecule has been realized to date. This may be achieved by designing a bis(phthalocyaninato)lutetium(III) double-decker complex with a crosswise ABAB phthalocyanine bearing alternating electron-donor and electron-acceptor groups.

View Article and Find Full Text PDF

Azobenzene-coated polymer nanoparticles in the 16-nm-diameter range act as phototriggered nanomotors combining photo to kinetic energy conversion with optical control through light intensity gradients. The grafted dyes act as molecular propellers: their photoisomerization supplies sufficient mechanical work to propel the particles in an aqueous medium toward the intensity minima with velocities of up to 15 μm/s. It is shown that nanoparticles can be driven over tens of micrometers by translating the intensity gradients in the plane.

View Article and Find Full Text PDF

The electro-optical Pockels response from a single non-centrosymmetric nanocrystal is reported. High sensitivity to the weak electric-field dependent nonlinear scattering is achieved through a dedicated imaging interferometric microscope and the linear dependence of electro-optical signal upon the applied field is checked. Using different incident light polarization states, a priori random spatial orientation of the crystal can be inferred.

View Article and Find Full Text PDF

A series of cationic Ir(III) substituted bipyridyl ()(N(∧)N (N(∧)N-bpy) complexes incorporating electron-donor and -acceptor substituents, [Ir(C(∧)N-ppy-R')(2)(N(∧)N-bpy-CH═CH-C(6)H(4)-R)][X] (X(-) = PF(6)(-) or C(12)H(25)SO(3)(-)), 2 (a, R = NEt(2) and R' = Me; b, R = O-Oct and R' = Me; c, R = NO(2) and R' = C(6)H(13); C(∧)N-ppy = cyclometalated 2-phenylpyridine, [Ir(C(∧)N-ppy-Me)(2)(N(∧)N-bpy-CH═CH-thienyl-Me)][PF(6)], 2d, and the dithienylethene (DTE)-containing complex 2e have been synthesized and characterized, and their absorption, luminescence, and quadratic nonlinear optical (NLO) properties are reported. Density functional theory (DFT) and time-dependent-DFT (TD-DFT) calculations on the complexes facilitate a detailed assignment of the excited states involved in the absorption and emission processes. All five complexes are luminescent in a rigid glass at 77 K, displaying vibronically structured spectra with long lifetimes (14-90 μs), attributed to triplet states localized on the styryl-appended bipyridines.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on second-harmonic generation from CdTe/CdS core/shell nanocrystals, exploring how different shapes affect their nonlinear properties.
  • These nanoparticles show strong and stable emission of second-harmonic light, even with the CdTe core's size still under strong quantum confinement.
  • The study uses a pointwise additive model to analyze the polarization response, demonstrating that careful design of these hybrid nanostructures can create very bright sources of nonlinear light at the nanoscale.
View Article and Find Full Text PDF

We report on the investigation of the structure of DNA liquid crystal (LC) phases by means of polarization sensitive two-photon microscopy (PSTPM). DNA was stained with fluorescent dyes, an intercalator propidium iodide, or a groove binder Hoechst 3342, and the angular dependence of the intensity of two-photon excited fluorescence emitted by the dye was collected. The local orientation of DNA molecules in cholesteric and columnar LC phases was established on the basis of the relative angle between the transition dipole of the dye and the long axis of DNA helix.

View Article and Find Full Text PDF