The coronavirus disease 2019 (COVID-19) pandemic has revealed that even the best-resourced hospitals may lack sufficient ventilators to support patients under surge conditions. During a pandemic or mass trauma, an affordable, low-maintenance, off-the-shelf device that would allow health care teams to rapidly expand their ventilator capacity could prove lifesaving, but only if it can be safely integrated into a complex and rapidly changing clinical environment. Here, we define an approach to safe ventilator sharing that prioritizes predictable and independent care of patients sharing a ventilator.
View Article and Find Full Text PDFThe colonial hydroid Podocoryna carnea grows adherent to surfaces progressing along them by a motile stolon tip. We here ask whether the stolon tip grows preferentially within grooves etched in silicon wafers. In a series of pilot experiments, we varied the dimensions of grooves and found that stolons did not utilize grooves with a width:depth of 5:5 μm or 10:10 μm, occasionally followed grooves 25:25 μm in size, and preferentially grew within grooves of a width:depth of 50:50 μm and 100:50 μm.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2015
The ability of humans to distinguish the delicate differences in food flavors depends mostly on retronasal smell, in which food volatiles entrained into the airway at the back of the oral cavity are transported by exhaled air through the nasal cavity to stimulate the olfactory receptor neurons. Little is known whether food volatiles are preferentially carried by retronasal flow toward the nasal cavity rather than by orthonasal flow into the lung. To study the differences between retronasal and orthonasal flow, we obtained computed tomography (CT) images of the orthonasal airway from a healthy human subject, printed an experimental model using a 3D printer, and analyzed the flow field inside the airway.
View Article and Find Full Text PDFIntroduction: The small intestine is one of the most ischemia-sensitive organs used in transplantation. To better preserve the intestinal graft viability and decrease ischemia-reperfusion injury, a device for extracorporeal perfusion was developed. We present the results for the first series of perfused human intestine with an intestinal perfusion unit (IPU).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2015
In the past two decades, much advancement has been made in the area of organ procurement and preservation for the transplant of kidneys, livers, and lungs. However, small intestine preservation remains unchanged. We propose a new preservation system for intestinal grafts that has the potential to increase the viability of the organ during transport.
View Article and Find Full Text PDFUnderstanding fluorescence propagation through a multiphoton microscope is of critical importance in designing high performance systems capable of deep tissue imaging. Optical models of a scattering tissue sample and the Olympus 20X 0.95NA microscope objective were used to simulate fluorescence propagation as a function of imaging depth for physiologically relevant scattering parameters.
View Article and Find Full Text PDFTypical imaging depths with multiphoton microscopy (MPM) are limited to less than 300 mum in many tissues due to light scattering. Optical clearing significantly reduces light scattering by replacing water in the organ tissue with a fluid having a similar index of refraction to that of proteins. We demonstrate MPM of intact, fixed, cleared mouse organs with penetration depths and fields of view in excess of 2 mm.
View Article and Find Full Text PDF