Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disabling illness of unknown etiology. Increasing evidence suggests hypothalamic involvement in ME/CFS pathophysiology, which has rarely been explored using magnetic resonance imaging (MRI) in the condition. This work aimed to use MRI to examine hypothalamus connectivity in adolescents with ME/CFS and explore how this relates to fatigue severity and illness duration.
View Article and Find Full Text PDFBackground: Associations of neonatal infection with brain growth and later neurodevelopmental outcomes in very preterm (VP) infants are unclear. This study aimed to assess associations of neonatal sepsis in VP infants with (1) brain growth from term-equivalent age to 13 years; and (2) 13-year brain volume and neurodevelopmental outcomes.
Methods: 224 infants born VP ( < 30 weeks' gestation/<1250 g birthweight) were recruited.
Myelination of human brain white matter (WM) continues into adulthood following birth, facilitating connection within and between brain networks. In vivo MRI studies using diffusion weighted imaging (DWI) suggest microstructural properties of brain WM increase over childhood and adolescence. Although DWI metrics, such as fractional anisotropy (FA), could reflect axonal myelination, they are not specific to myelin and could also represent other elements of WM microstructure, for example, fibre architecture, axon diameter and cell swelling.
View Article and Find Full Text PDFIntroduction: Adolescents and adults with a Fontan circulation are at risk of cognitive dysfunction; Attention and processing speed are notable areas of concern. Underlying mechanisms and brain alterations associated with worse long-term cognitive outcomes are not well determined. This study investigated brain white matter microstructure in adolescents and adults with a Fontan circulation and associations with resting and peak exercise oxygen saturations (SaO), predicted maximal oxygen uptake during exercise (% pred VO), and attention and processing speed.
View Article and Find Full Text PDFBackground And Objectives: To investigate brain regional white matter development in full-term (FT) and very preterm (VP) children at term equivalent and 7 and 13 years of age based on the ratio of - and -weighted MRI ( -w/ -w), including (1) whether longitudinal changes differ between birth groups or sexes, (2) associations with perinatal risk factors in VP children, and (3) relationships with neurodevelopmental outcomes at 13 years.
Methods: Prospective longitudinal cohort study of VP (born <30 weeks' gestation or <1,250 g) and FT infants born between 2001 and 2004 and followed up at term equivalent and 7 and 13 years of age, including MRI studies and neurodevelopmental assessments. -w/ -w images were parcellated into 48 white matter regions of interest.
Children born very preterm (VPT; <32 weeks' gestation) have alterations in brain white matter and poorer math ability than full-term (FT) peers. Diffusion-weighted magnetic resonance imaging studies suggest a link between white matter microstructure and math in VPT and FT children, although longitudinal studies using advanced modelling are lacking. In a prospective longitudinal cohort of VPT and FT children we used Fixel-Based Analysis to investigate associations between maturation of white matter fibre density (FD), fibre-bundle cross-section (FC), and combined fibre density and cross-section (FDC) and math computation ability at 7 (n = 136 VPT; n = 32 FT) and 13 (n = 130 VPT; n = 44 FT) years, as well as between change in white matter and math computation ability from 7 to 13 years (n = 103 VPT; n = 21 FT).
View Article and Find Full Text PDFBackground: Neurocognitive outcomes beyond childhood in people with a Fontan circulation are not well defined. This study aimed to investigate neurocognitive functioning in adolescents and adults with a Fontan circulation and associations with structural brain injury, brain volumetry, and postnatal clinical factors.
Methods: In a binational study, participants with a Fontan circulation without a preexisting major neurological disability were prospectively recruited from the Australia and New Zealand Fontan Registry.
Objective: To use structural connectivity to (1) compare brain networks between typically and atypically developing (very preterm) children, (2) explore associations between potential perinatal developmental disturbances and brain networks, and (3) describe associations between brain networks and functional impairments in very preterm children.
Methods: 26 full-term and 107 very preterm 7-year-old children (born <30weeks' gestational age and/or <1250g) underwent T1- and diffusion-weighted imaging. Global white matter fibre networks were produced using 80 cortical and subcortical nodes, and edges were created using constrained spherical deconvolution-based tractography.
Isolation of the brain from other tissue types in magnetic resonance (MR) images is an important step in many types of neuro-imaging research using both humans and animal subjects. The importance of brain extraction is well appreciated-numerous approaches have been published and the benefits of good extraction methods to subsequent processing are well known. We describe a tool-the marker based watershed scalper (MBWSS)-for isolating the brain in T1-weighted MR images built using filtering and segmentation components from the Insight Toolkit (ITK) framework.
View Article and Find Full Text PDFBackground: We report the experience of endoscopic endonasal transsphenoidal surgery (EETS) for resection of pituitary region tumours at Wellington, the central regional referral centre for neurosurgery in New Zealand, and discuss the collaborative mentoring surgical model that enhanced the learning experience.
Method: Between January 2007 and June 2009, a total of 47 operations on 46 patients were performed and reviewed retrospectively. All patients had perioperative clinical assessment, hormonal profile and magnetic resonance imaging studies for residual/recurrent disease.