Publications by authors named "Joseph Y Lucisano"

A patient-centered approach to device design can provide important advantages in optimizing diabetes care technology for broadened adoption and improved adherence. Results from two surveys of people with diabetes and the parents of children with diabetes ( = 1,348) regarding continuous glucose monitoring (CGM) devices reveal the importance of the concept of "user burden" in patients' and caregivers' evaluations of the acceptability of available devices. Survey respondents' strongly favorable reactions to a proposed 1-year, fully implanted CGM device with no skin-attached components further confirm that minimizing system obtrusiveness will likely be of significant value in reducing hurdles to CGM device use and adherence.

View Article and Find Full Text PDF

Objective: The use of a fully implanted first-generation prototype sensor/telemetry system is described for long-term monitoring of subcutaneous tissue glucose in a small cohort of people with diabetes.

Methods: Sensors are based on a membrane containing immobilized glucose oxidase and catalase coupled to oxygen electrodes and a telemetry system, integrated as an implant. The devices remained implanted for up to 180 days, with signals transmitted every 2 min to external receivers.

View Article and Find Full Text PDF

Certain types of implanted medical devices depend on oxygen supplied from surrounding tissues for their function. However, there is a concern that the tissue associated with the foreign body response to implants may become impermeable to oxygen over the long term and render the implant nonfunctional. We report oxygen flux recordings from electrochemical oxygen sensor devices with wireless telemetry implanted in subcutaneous porcine tissues.

View Article and Find Full Text PDF

An implantable sensor capable of long-term monitoring of tissue glucose concentrations by wireless telemetry has been developed for eventual application in people with diabetes. The sensor telemetry system functioned continuously while implanted in subcutaneous tissues of two pigs for a total of 222 and 520 days, respectively, with each animal in both nondiabetic and diabetic states. The sensor detects glucose via an enzyme electrode that is based on differential electrochemical oxygen detection, which reduces the sensitivity of the sensor to encapsulation by the body, variations in local microvascular perfusion, limited availability of tissue oxygen, and inactivation of the enzymes.

View Article and Find Full Text PDF