Efficient light harvesting for molecular-based solar-conversion systems requires absorbers that span the photon-rich red and near-infrared (NIR) regions of the solar spectrum. Reported herein are the photophysical properties of a set of six chlorin-imides and nine synthetic chlorin analogues that extend the absorption deeper (624-714 nm) into these key spectral regions. These absorbers help bridge the gap between typical chlorins and bacteriochlorins.
View Article and Find Full Text PDFSynthetic chlorins can accommodate diverse substituents about the macrocycle perimeter. Simple auxochromes (e.g.
View Article and Find Full Text PDFBiohybrid antenna systems have been constructed that contain synthetic chromophores attached to 31mer analogues of the bacterial photosynthetic core light-harvesting (LH1) β-polypeptide. The peptides are engineered with a Cys site for bioconjugation with maleimide-terminated chromophores, which include synthetic bacteriochlorins (BC1, BC2) with strong near-infrared absorption and commercial dyes Oregon green (OGR) and rhodamine red (RR) with strong absorption in the blue-green to yellow-orange regions. The peptides place the Cys 14 (or 6) residues before a native His site that binds bacteriochlorophyll a (BChl-a) and, like the native LH proteins, have high helical content as probed by single-reflection IR spectroscopy.
View Article and Find Full Text PDFAssessing the effects of substituents on the spectra of chlorophylls is essential for gaining a deep understanding of photosynthetic processes. Chlorophyll a and b differ solely in the nature of the 7-substituent (methyl versus formyl), whereas chlorophyll a and d differ solely in the 3-substituent (vinyl versus formyl), yet have distinct long-wavelength absorption maxima: 665 (a) 646 (b) and 692 nm (d). Herein, the spectra, singlet excited-state decay characteristics, and results from DFT calculations are examined for synthetic chlorins and 13(1)-oxophorbines that contain ethynyl, acetyl, formyl and other groups at the 3-, 7- and/or 13-positions.
View Article and Find Full Text PDF