Publications by authors named "Joseph W O'Connor"

Epithelial-mesenchymal transition (EMT) is a physiological process that is essential during embryogenesis and wound healing and also contributes to pathologies including fibrosis and cancer. EMT is characterized by marked gene expression changes, loss of cell-cell contacts, remodeling of the cytoskeleton, and acquisition of enhanced motility. In the late stages of EMT, cells can exhibit myofibroblast-like properties with enhanced expression of the mesenchymal protein marker α-smooth muscle actin and contractile activity.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is an important process that mediates organ development and wound healing, and in pathological contexts, it can contribute to the progression of fibrosis and cancer. During EMT, cells exhibit marked changes in cytoskeletal organization and increased expression of a variety of actin associated proteins. Here, we sought to determine the role of caldesmon in mediating EMT in response to transforming growth factor (TGF)-β1.

View Article and Find Full Text PDF

During epithelial-mesenchymal transition (EMT) epithelial cells lose cell-cell adhesion, exhibit morphological changes, and upregulate the expression of cytoskeletal proteins. Previous studies have demonstrated that complete disruption of cell-cell contact can promote transforming growth factor (TGF)-β1-induced EMT and the expression of the myofibroblast marker alpha smooth muscle actin (αSMA). Furthermore, increased cell spreading mediates TGFβ1-induced αSMA expression during EMT.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is a physiological process that plays an important role in embryonic development and wound healing and is appropriated during pathological conditions including fibrosis and cancer metastasis. EMT can be initiated by a variety of factors, including transforming growth factor (TGF)-β, and is characterized by loss of epithelial features including cell-cell contacts and apicobasal polarity and acquisition of a motile, mesenchymal phenotype. A key feature of EMT is reorganization of the cytoskeleton and recent studies have elucidated regulation mechanisms governing this process.

View Article and Find Full Text PDF

Myofibroblasts mediate normal wound healing and upon chronic activation can contribute to the development of pathological conditions including organ fibrosis and cancer. Myofibroblasts can develop from epithelial cells through an epithelial-mesenchymal transition (EMT) during which epithelial cells exhibit drastic morphological changes and upregulate cytoskeletal associated proteins that enable exertion of large contractile forces and remodeling of the surrounding microenvironment. Increased matrix rigidity is a hallmark of fibrosis and tumor progression and mechanical tension has been identified as a regulator of EMT; however, the mechanisms governing the mechanical regulation of EMT are not completely understood.

View Article and Find Full Text PDF

Fibrosis, a disease that results in loss of organ function, contributes to a significant number of deaths worldwide and sustained fibrotic activation has been suggested to increase the risk of developing cancer in a variety of tissues. Fibrogenesis and tumor progression are regulated in part through the activation and activity of myofibroblasts. Increasing evidence links myofibroblasts found within fibrotic lesions and the tumor microenvironment to a process termed epithelial-mesenchymal transition (EMT), a phenotypic change in which epithelial cells acquire mesenchymal characteristics.

View Article and Find Full Text PDF

Myofibroblasts, specialized cells that play important roles in wound healing and fibrosis, can develop from epithelial cells through an epithelial-mesenchymal transition (EMT). During EMT, epithelial cells detach from neighboring cells and acquire an elongated, mesenchymal-like morphology. These phenotypic changes are accompanied by changes in gene expression patterns including upregulation of a variety of cytoskeletal associated proteins which contribute to the ability of myofibroblasts to exert large contractile forces.

View Article and Find Full Text PDF

Using molecular dynamics (MD) simulations, we studied the structure and dynamics of two dimyristoylphosphatidylcholine (DMPC):cholesterol bilayers at concentrations representative of the ocular lens (ratios of 1:1 and 1:2). These MD simulations agree well with experimental deuterium order parameters and bilayer peak-to-peak distances. Although it is known that the average surface area per lipid rapidly decreases from low to moderate levels of cholesterol, our simulations indicate that there is a relatively small change in the average lipid area from 50 to 66.

View Article and Find Full Text PDF

A significant modification to the additive all-atom CHARMM lipid force field (FF) is developed and applied to phospholipid bilayers with both choline and ethanolamine containing head groups and with both saturated and unsaturated aliphatic chains. Motivated by the current CHARMM lipid FF (C27 and C27r) systematically yielding values of the surface area per lipid that are smaller than experimental estimates and gel-like structures of bilayers well above the gel transition temperature, selected torsional, Lennard-Jones and partial atomic charge parameters were modified by targeting both quantum mechanical (QM) and experimental data. QM calculations ranging from high-level ab initio calculations on small molecules to semiempirical QM studies on a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer in combination with experimental thermodynamic data were used as target data for parameter optimization.

View Article and Find Full Text PDF