The ThermoML Archive is a subset of Thermodynamics Research Center (TRC) data holdings corresponding to cooperation between NIST TRC and five journals: Journal of Chemical Engineering and Data (ISSN: 1520-5134), The Journal of Chemical Thermodynamics (ISSN: 1096-3626), Fluid Phase Equilibria (ISSN: 0378-3812), Thermochimica Acta (ISSN: 0040-6031), and International Journal of Thermophysics (ISSN: 1572-9567). Data from initial cooperation (around 2003) through the 2019 calendar year are included. The archive has undergone a major update with the goal of improving the FAIRness and user experience of the data provided by the service.
View Article and Find Full Text PDFThis article is the first of three projected IUPAC Technical Reports resulting from IUPAC Project 2011-037-2-100 (Reference Materials for Phase Equilibrium Studies). The goal of that project was to select reference systems with critically evaluated property values for the validation of instruments and techniques used in phase equilibrium studies for mixtures. This Report proposes seven systems for liquid-liquid equilibrium studies, covering the four most common categories of binary mixtures: aqueous systems of moderate solubility, non-aqueous systems, systems with low solubility, and systems with ionic liquids.
View Article and Find Full Text PDFIn the present study, the simultaneous and accurate determination of liquid viscosity and surface tension of the -alkanes -hexane (-CH), -octane (-CH), -decane (-CH), and -hexadecane (-CH) by surface light scattering (SLS) in thermodynamic equilibrium is demonstrated. Measurements have been performed over a wide temperature range from 283.15 K up to 473.
View Article and Find Full Text PDFHigh quality thermophysical property data are essential to many scientific and engineering applications. These data are produced at a high rate and are affected by a range of experimental and reporting error sources that often exceed stated uncertainties. As a result, critical evaluation is required to establish the limits of reliability in a quantified way.
View Article and Find Full Text PDFNew measurements are reported for the isochoric heat capacity of the ionic liquid substance 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C6mim][NTf2]). These measurements extend the ranges of our earlier study [N.G.
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present article describes the background and implementation for new additions in latest release of TDE. Advances are in the areas of program architecture and quality improvement for automatic property evaluations, particularly for pure compounds.
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for material streams involving any number of chemical components with assessment of uncertainties. The method involves construction of Redlich-Kister type equations for individual properties (excess volume, thermal conductivity, viscosity, surface tension, and excess enthalpy) and activity-coefficient models for phase equilibrium properties (vapor-liquid equilibrium).
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for ternary chemical systems. The method involves construction of Redlich-Kister type equations for individual properties (excess volume, thermal conductivity, viscosity, surface tension, and excess enthalpy) and activity coefficient models for phase equilibrium properties (vapor-liquid and liquid-liquid equilibrium).
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe the development of a World Wide Web-based interface to TDE evaluations of pure compound properties, including critical properties, phase boundary equilibria (vapor pressures, sublimation pressures, and crystal-liquid boundary pressures), densities, energetic properties, and transport properties. This includes development of a system for caching evaluation results to maintain high availability and an advanced window-in-window interface that leverages modern Web-browser technologies.
View Article and Find Full Text PDFThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration.
View Article and Find Full Text PDFThe relative volatilities of a variety of common ionic liquids have been determined for the first time. Equimolar mixtures of ionic liquids were vacuum-distilled in a glass sublimation apparatus at approximately 473 K. The composition of the initial distillate, determined by NMR spectroscopy, was used to establish the relative volatility of each ionic liquid in the mixture.
View Article and Find Full Text PDFIt is widely believed that a defining characteristic of ionic liquids (or low-temperature molten salts) is that they exert no measurable vapour pressure, and hence cannot be distilled. Here we demonstrate that this is unfounded, and that many ionic liquids can be distilled at low pressure without decomposition. Ionic liquids represent matter solely composed of ions, and so are perceived as non-volatile substances.
View Article and Find Full Text PDFData for viscosity vs. water content for three hydrophobic room-temperature ionic liquids show that their viscosities are strongly dependent on the amount of dissolved water.
View Article and Find Full Text PDFJ Res Natl Inst Stand Technol
February 1998
A high-temperature adiabatic calorimeter has been developed to measure the constant-volume specific heat capacities ( ) of both gases and liquids, especially fluids of interest to emerging energy technologies. The chief design feature is its nearly identical twin bomb arrangement, which allows accurate measurement of energy differences without large corrections for energy losses due to thermal radiation fluxes. Operating conditions for the calorimeter cover a range of temperatures from 250 K to 700 K and at pressures up to 20 MPa.
View Article and Find Full Text PDF