The lymphatic vascular system spans nearly every organ in the body and serves as an important network that maintains fluid, metabolite, and immune cell homeostasis. Recently, there has been a growing interest in the role of lymphatic biology in chronic disorders outside the realm of lymphatic abnormalities, lymphedema, or oncology, such as cardiovascular-kidney-metabolic syndrome (CKM). We propose that enhancing lymphatic function pharmacologically may be a novel and effective way to improve quality of life in patients with CKM syndrome by engaging multiple pathologies at once throughout the body.
View Article and Find Full Text PDFThe transcription factor SREBP2 is the main regulator of cholesterol homeostasis and is central to the mechanism of action of lipid-lowering drugs, such as statins, which are responsible for the largest overall reduction in cardiovascular risk and mortality in humans with atherosclerotic disease. Recently, SREBP2 has been implicated in leukocyte innate and adaptive immune responses by upregulation of cholesterol flux or direct transcriptional activation of pro-inflammatory genes. Here, we investigate the role of SREBP2 in endothelial cells (ECs), since ECs are at the interface of circulating lipids with tissues and crucial to the pathogenesis of cardiovascular disease.
View Article and Find Full Text PDFThere is a growing appreciation that a tight relationship exists between cholesterol homeostasis and immunity in leukocytes; however, this relationship has not been deeply explored in the vascular endothelium. Endothelial cells (ECs) rapidly respond to extrinsic signals, such as tissue damage or microbial infection, by upregulating factors to activate and recruit circulating leukocytes to the site of injury and aberrant activation of ECs leads to inflammatory based diseases, such as multiple sclerosis and atherosclerosis. Here, we studied the role of cholesterol and a key transcription regulator of cholesterol homeostasis, SREBP2, in the EC responses to inflammatory stress.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) of tissue samples is a promising analytical tool that has quickly become associated with biomedical and pharmacokinetic studies. It eliminates several labor-intensive protocols associated with more classical imaging techniques, and provides accurate, histological data at a rapid pace. Because mass spectrometry is used as the readout, MSI can be applied to almost any molecule, especially those that are biologically relevant.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) of tissue samples is a promising analytical tool that has quickly become associated with biomedical and pharmacokinetic studies. It eliminates several labor-intensive protocols associated with more classical imaging techniques and provides accurate histological data at a rapid pace. Because mass spectrometry is used as the readout, MSI can be applied to almost any molecule, especially those that are biologically relevant.
View Article and Find Full Text PDF