Exposure to radiofrequency (RF) electromagnetic fields (EMF) has been associated with the modulation of neuronal electrophysiology and synaptic plasticity. Given the potential of these changes to coincide with alterations in gene expression, this study investigated whether a transcriptional response would occur in neurons following exposure to RF-EMF, under both thermal and nonthermal conditions. Rat primary hippocampal neurons (PHNs) underwent either a single (one-time) or a multiple (3-times, once a day) exposures to RF-EMF (3.
View Article and Find Full Text PDFInactivation of influenza A virus by radiofrequency (RF) energy exposure at levels near Institute of Electrical and Electronics Engineers (IEEE) safety thresholds has been reported. The authors hypothesized that this inactivation was through a structure-resonant energy transfer mechanism. If this hypothesis is confirmed, such a technology could be used to prevent transmission of virus in occupied public spaces where RF irradiation of surfaces could be performed at scale.
View Article and Find Full Text PDFThe increasing use of nonionizing radiofrequency electromagnetic fields (RF-EMFs) in a wide range of technologies necessitates studies to further understanding of biological effects from exposures to such forms of electromagnetic fields. While previous studies have described mechanisms for cellular changes occurring following exposure to low-intensity RF-EMFs, the role of molecular epigenetics has not been thoroughly investigated. Specifically unresolved is the effect of RF-EMFs on deoxyribonucleic acid (DNA) methylation, which is a powerful epigenetic process, used by cells to regulate gene expression.
View Article and Find Full Text PDFExposures to radiofrequency electromagnetic fields (RF-EMFs, 100 kHz to 6 GHz) have been associated with both positive and negative effects on cognitive behavior. To elucidate the mechanism of RF-EMF interaction, a few studies have examined its impact on neuronal activity and synaptic plasticity. However, there is still a need for additional basic research that further our understanding of the underlying mechanisms of RF-EMFs on the neuronal system.
View Article and Find Full Text PDF