Studies have demonstrated that pervasive gene tree conflict underlies several important phylogenetic relationships where different species tree methods produce conflicting results. Here, we present a means of dissecting the phylogenetic signal for alternative resolutions within a data set in order to resolve recalcitrant relationships and, importantly, identify what the data set is unable to resolve. These procedures extend upon methods for isolating conflict and concordance involving specific candidate relationships and can be used to identify systematic error and disambiguate sources of conflict among species tree inference methods.
View Article and Find Full Text PDFComparative methods allow researchers to make inferences about evolutionary processes and patterns from phylogenetic trees. In Bayesian phylogenetics, estimating a phylogeny requires specifying priors on parameters characterizing the branching process and rates of substitution among lineages, in addition to others. Accordingly, characterizing the effect of prior selection on phylogenies is an active area of research.
View Article and Find Full Text PDFPhylogenomic research is accelerating the publication of landmark studies that aim to resolve deep divergences of major organismal groups. Meanwhile, systems for identifying and integrating the products of phylogenomic inference-such as newly supported clade concepts-have not kept pace. However, the ability to verbalize node concept congruence and conflict across multiple, in effect simultaneously endorsed phylogenomic hypotheses, is a prerequisite for building synthetic data environments for biological systematics and other domains impacted by these conflicting inferences.
View Article and Find Full Text PDFSeveral plant lineages have evolved adaptations that allow survival in extreme and harsh environments including many families within the plant clade Portulacineae (Caryophyllales) such as the Cactaceae, Didiereaceae, and Montiaceae. Here, using newly generated transcriptomic data, we reconstructed the phylogeny of Portulacineae and examined potential correlates between molecular evolution and adaptation to harsh environments. Our phylogenetic results were largely congruent with previous analyses, but we identified several early diverging nodes characterized by extensive gene tree conflict.
View Article and Find Full Text PDFRecent studies have demonstrated that conflict is common among gene trees in phylogenomic studies, and that less than one percent of genes may ultimately drive species tree inference in supermatrix analyses. Herein, we examined two data sets where supermatrix and coalescent-based species trees conflict. We identified two highly influential "outlier" genes in each data set.
View Article and Find Full Text PDFPhylogenomic datasets have been successfully used to address questions involving evolutionary relationships, patterns of genome structure, signatures of selection, and gene and genome duplications. However, despite the recent explosion in genomic and transcriptomic data, the utility of these data sources for efficient divergence-time inference remains unexamined. Phylogenomic datasets pose two distinct problems for divergence-time estimation: (i) the volume of data makes inference of the entire dataset intractable, and (ii) the extent of underlying topological and rate heterogeneity across genes makes model mis-specification a real concern.
View Article and Find Full Text PDFPremise Of The Study: Large phylogenies can help shed light on macroevolutionary patterns that inform our understanding of fundamental processes that shape the tree of life. These phylogenies also serve as tools that facilitate other systematic, evolutionary, and ecological analyses. Here we combine genetic data from public repositories (GenBank) with phylogenetic data (Open Tree of Life project) to construct a dated phylogeny for seed plants.
View Article and Find Full Text PDFPremise Of The Study: Phylogenetic support has been difficult to evaluate within the green plant tree of life partly due to a lack of specificity between conflicted versus poorly informed branches. As data sets continue to expand in both breadth and depth, new support measures are needed that are more efficient and informative.
Methods: We describe the Quartet Sampling (QS) method, a quartet-based evaluation system that synthesizes several phylogenetic and genomic analytical approaches.
Divergence time estimation-the calibration of a phylogeny to geological time-is an integral first step in modeling the tempo of biological evolution (traits and lineages). However, despite increasingly sophisticated methods to infer divergence times from molecular genetic sequences, the estimated age of many nodes across the tree of life contrast significantly and consistently with timeframes conveyed by the fossil record. This is perhaps best exemplified by crown angiosperms, where molecular clock (Triassic) estimates predate the oldest (Early Cretaceous) undisputed angiosperm fossils by tens of millions of years or more.
View Article and Find Full Text PDFThe role played by whole genome duplication (WGD) in plant evolution is actively debated. WGDs have been associated with advantages such as superior colonization, various adaptations, and increased effective population size. However, the lack of a comprehensive mapping of WGDs within a major plant clade has led to uncertainty regarding the potential association of WGDs and higher diversification rates.
View Article and Find Full Text PDFMol Phylogenet Evol
November 2017
Recent developments in phylogenetic methods and data acquisition have allowed for the construction of large and comprehensive phylogenetic relationships. Published phylogenies represent an enormous resource that not only facilitates the resolution of questions related to comparative biology, but also provides a resource on which to gauge the development of concordance across the tree of life. From the Open Tree of Life, we gathered 290 avian phylogenies representing all major groups that have been published over the last few decades and analyzed how concordance and conflict develop among these trees through time.
View Article and Find Full Text PDFSummary: The ease with which phylogenomic data can be generated has drastically escalated the computational burden for even routine phylogenetic investigations. To address this, we present phyx : a collection of programs written in C ++ to explore, manipulate, analyze and simulate phylogenetic objects (alignments, trees and MCMC logs). Modelled after Unix/GNU/Linux command line tools, individual programs perform a single task and operate on standard I/O streams that can be piped to quickly and easily form complex analytical pipelines.
View Article and Find Full Text PDFMol Phylogenet Evol
December 2016
New World Vultures are large-bodied carrion feeding birds in the family Cathartidae, currently consisting of seven species from five genera with geographic distributions in North and South America. No study to date has included all cathartid species in a single phylogenetic analysis. In this study, we investigated the phylogenetic relationships among all cathartid species using five nuclear (nuc; 4060bp) and two mitochondrial (mt; 2165bp) DNA loci with fossil calibrated gene tree (27 outgroup taxa) and coalescent-based species tree (2 outgroup taxa) analyses.
View Article and Find Full Text PDFBackground: The use of transcriptomic and genomic datasets for phylogenetic reconstruction has become increasingly common as researchers attempt to resolve recalcitrant nodes with increasing amounts of data. The large size and complexity of these datasets introduce significant phylogenetic noise and conflict into subsequent analyses. The sources of conflict may include hybridization, incomplete lineage sorting, or horizontal gene transfer, and may vary across the phylogeny.
View Article and Find Full Text PDFThe phylogeny of Galliformes (landfowl) has been studied extensively; however, the associated chronologies have been criticized recently due to misplaced or misidentified fossil calibrations. As a consequence, it is unclear whether any crown-group lineages arose in the Cretaceous and survived the Cretaceous-Paleogene (K-Pg; 65.5 Ma) mass extinction.
View Article and Find Full Text PDFOur growing understanding of the plant tree of life provides a novel opportunity to uncover the major drivers of angiosperm diversity. Using a time-calibrated phylogeny, we characterized hot and cold spots of lineage diversification across the angiosperm tree of life by modeling evolutionary diversification using stepwise AIC (MEDUSA). We also tested the whole-genome duplication (WGD) radiation lag-time model, which postulates that increases in diversification tend to lag behind established WGD events.
View Article and Find Full Text PDFMotivation: Phylogenetic estimates from published studies can be archived using general platforms like Dryad (Vision, 2010) or TreeBASE (Sanderson et al., 1994). Such services fulfill a crucial role in ensuring transparency and reproducibility in phylogenetic research.
View Article and Find Full Text PDFSummary: Phylogenetic comparative methods are essential for addressing evolutionary hypotheses with interspecific data. The scale and scope of such data have increased dramatically in the past few years. Many existing approaches are either computationally infeasible or inappropriate for data of this size.
View Article and Find Full Text PDFSucculent plants are widely distributed, reaching their highest diversity in arid and semi-arid regions. Their origin and diversification is thought to be associated with a global expansion of aridity. We test this hypothesis by investigating the tempo and pattern of Cactaceae diversification.
View Article and Find Full Text PDFPhylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets.
View Article and Find Full Text PDFBackground: Scientists rarely reuse expert knowledge of phylogeny, in spite of years of effort to assemble a great "Tree of Life" (ToL). A notable exception involves the use of Phylomatic, which provides tools to generate custom phylogenies from a large, pre-computed, expert phylogeny of plant taxa. This suggests great potential for a more generalized system that, starting with a query consisting of a list of any known species, would rectify non-standard names, identify expert phylogenies containing the implicated taxa, prune away unneeded parts, and supply branch lengths and annotations, resulting in a custom phylogeny suited to the user's needs.
View Article and Find Full Text PDFUnderstanding the rate at which new species form is a key question in studying the evolution of life on earth. Here we review our current understanding of speciation rates, focusing on studies based on the fossil record, phylogenies, and mathematical models. We find that speciation rates estimated from these different studies can be dramatically different: some studies find that new species form quickly and often, while others find that new species form much less frequently.
View Article and Find Full Text PDFBackground: Our ability to monitor populations or species that were once threatened or endangered and in the process of recovery is enhanced by using genetic methods to assess overall population stability and size over time. This can be accomplished most directly by obtaining genetic measures from temporally-spaced samples that reflect the overall stability of the population as given by changes in genetic diversity levels (allelic richness and heterozygosity), degree of population differentiation (F(ST) and D(EST)), and effective population size (N(e)). The primary goal of any recovery effort is to produce a long-term self-sustaining population, and these genetic measures provide a metric by which we can gauge our progress and help make important management decisions.
View Article and Find Full Text PDF