: Community-acquired methicillin-resistant (CA-MRSA) greatly complicates the treatment of skin and soft tissue infections (SSTI). It was previously found that subcutaneous (SQ) treatment with the mononuclear phagocyte (MP)-selective activator complements peptide-derived immunostimulant-02 (CPDI-02; formerly EP67) and increases prophylaxis of outbred CD-1 mice against SQ infection with CA-MRSA. Here, we determined if treatment with CPDI-02 also increases curative protection.
View Article and Find Full Text PDFGenerating long-lived mucosal and systemic antibodies through respiratory immunization with protective antigens encapsulated in nanoscale biodegradable particles could potentially decrease or eliminate the incidence of many infectious diseases, but requires the incorporation of a suitable mucosal immunostimulant. We previously found that respiratory immunization with a model protein antigen (LPS-free OVA) encapsulated in PLGA 50:50 nanoparticles (~380 nm diameter) surface-modified with complement peptide-derived immunostimulant 02 (CPDI-02; formerly EP67) through 2 kDa PEG linkers increases mucosal and systemic OVA-specific memory T-cells with long-lived surface phenotypes in young, naïve female C57BL/6 mice. Here, we determined if respiratory immunization with LPS-free OVA encapsulated in similar PLGA 50:50 microparticles (~1 μm diameter) surface-modified with CPDI-02 (CPDI-02-MP) increases long-term OVA-specific mucosal and systemic antibodies.
View Article and Find Full Text PDFRNA interference (RNAi) molecules have tremendous potential for cancer therapy but are limited by insufficient potency after intravenous (IV) administration. We previously found that polymer complexes (polyplexes) formed between 3'-cholesterol-modified siRNA (Chol-siRNA) or DsiRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase RNAi potency against stably expressed LUC mRNA in primary syngeneic murine breast tumors after daily IV dosing. Chol-DsiRNA polyplexes, however, maintain LUC mRNA suppression for ~48 h longer after the final dose than Chol-siRNA polyplexes, which suggests that they are the better candidate formulation.
View Article and Find Full Text PDFRNA interference molecules have tremendous potential for cancer therapy but are limited by insufficient potency after i.v. administration.
View Article and Find Full Text PDFEP67 is a second-generation, human C5a-derived decapeptide agonist of C5a receptor 1 (C5aR1/CD88) that selectively activates mononuclear phagocytes over neutrophils to potentiate protective innate and adaptive immune responses while potentially minimizing neutrophil-mediated toxicity. Pro and -methyl-Leu (Me-Leu) amino acid residues within EP67 likely induce backbone structural changes that increase potency and selective activation of mononuclear phagocytes over neutrophils versus first-generation EP54. The low coupling efficiency between Pro and Me-Leu and challenging purification by HPLC, however, greatly increase scale-up costs of EP67 for clinical use.
View Article and Find Full Text PDFInt J Pharm
June 2019
Encapsulation of protein vaccines in biodegradable nanoparticles (NP) increases T-cell expansion after mucosal immunization but requires incorporating a suitable immunostimulant to increase long-lived memory T-cells. EP67 is a clinically viable, host-derived peptide agonist of the C5a receptor that selectively activates antigen presenting cells over neutrophils. We previously found that encapsulating EP67-conjugated CTL peptide vaccines in NP increases long-lived memory subsets of CTL after respiratory immunization.
View Article and Find Full Text PDFObjective: To investigate the environmental precipitants, treatment and outcome of critically ill patients affected by the largest and most lethal reported epidemic of thunderstorm asthma.
Design, Setting And Participants: Retrospective multicentre observational study. Meteorological, airborne particulate and pollen data, and a case series of 35 patients admitted to 15 intensive care units (ICUs) due to the thunderstorm asthma event of 21-22 November 2016, in Victoria, Australia, were analysed and compared with 1062 total ICU-admitted Australian patients with asthma in 2016.
Background: A multidisciplinary collaboration investigated the world's largest, most catastrophic epidemic thunderstorm asthma event that took place in Melbourne, Australia, on Nov 21, 2016, to inform mechanisms and preventive strategies.
Methods: Meteorological and airborne pollen data, satellite-derived vegetation index, ambulance callouts, emergency department presentations, and data on hospital admissions for Nov 21, 2016, as well as leading up to and following the event were collected between Nov 21, 2016, and March 31, 2017, and analysed. We contacted patients who presented during the epidemic thunderstorm asthma event at eight metropolitan health services (each including up to three hospitals) via telephone questionnaire to determine patient characteristics, and investigated outcomes of intensive care unit (ICU) admissions.
Background: The setting of tidal volume (V) during controlled mechanical ventilation (CMV) in critically ill patients without acute respiratory distress syndrome (ARDS) is likely important but currently unknown. We aimed to describe current CMV settings in intensive care units (ICUs) across Victoria.
Methods: We performed a multicentre, prospective, observational study.
RNA interference has tremendous potential for cancer therapy but is limited by the insufficient potency of RNAi molecules after i.v. administration.
View Article and Find Full Text PDFMol Pharm
May 2017
The diameter of biodegradable particles used to coencapsulate immunostimulants and subunit vaccines affects the magnitude of memory CD8 T cells generated by systemic immunization. Possible effects on the magnitude of CD8 T cells generated by mucosal immunization or memory subsets that potentially correlate more strongly with protection against certain pathogens, however, are unknown. In this study, we conjugated our novel host-derived mucosal immunostimulant, EP67, to the protective MCMV CTL epitope, pp89, through a lysosomal protease-labile double arginine linker (pp89-RR-EP67) and encapsulated in PLGA 50:50 micro- or nanoparticles.
View Article and Find Full Text PDFEP67 is a complement component 5a (C5a)-derived peptide agonist of the C5a receptor (CD88) that selectively activates DCs over neutrophils. Systemic administration of EP67 covalently attached to peptides, proteins, or attenuated pathogens generates TH1-biased immunogen-specific humoral and cellular immune responses with little inflammation. Furthermore, intranasal administration of EP67 alone increases the proportion of activated APCs in the airways.
View Article and Find Full Text PDFPharm Res
March 2015
Purpose: Determine the feasibility and potential benefit of peripherally cross-linking the shell of core-shell polymer micelles on the premature release of physically loaded hydrophobic drug in whole blood and subsequent potency against solid tumors.
Methods: Individual Pluronic F127 polymer micelles (F127 PM) peripherally cross-linked with ethylenediamine at 76% of total PEO blocks (X-F127 PM) were physically loaded with combretastatin A4 (CA4) by the solid dispersion method and compared to CA4 physically loaded in uncross-linked F127 PM, CA4 in DMSO in vitro, or water-soluble CA4 phosphate (CA4P) in vivo.
Results: X-F127 PM had similar CA4 loading and aqueous solubility as F127 PM up to 10 mg CA4 / mL at 22.
Modifying the sense strand of nuclease-resistant siRNA with 3'-cholesterol (Chol-*siRNA) increases mRNA suppression after i.v. administration but with relatively low efficacy.
View Article and Find Full Text PDFWe describe a case of a 51-year-old man who ingested methylene chloride and presented with the classical clinical features. He developed an acute abdomen that required repeated laparotomy. The effect of an ethanol infusion on carboxyhaemoglobin concentrations in this case was also of interest and could potentially be a new treatment modality.
View Article and Find Full Text PDFBackground: Studies conducted before the conception of medical emergency teams (METs) revealed that cardiac arrests were often preceded by deranged vital signs. METs have been implemented in hospitals to review ward patients whose conditions are deteriorating in order to prevent adverse events, including cardiac arrest. Antecedents to cardiac arrests in a MET-equipped hospital have not been assessed.
View Article and Find Full Text PDFBackground: Our laboratories forged the concept of macrophage delivery of protein antioxidants to attenuate neuroinflammation and nigrostriatal neurodegeneration in Parkinson's disease. Notably, the delivery of the redox enzyme, catalase, incorporated into a polyion complex micelle ('nanozyme') by bone marrow-derived macrophages protected nigrostriatum against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. Nonetheless, how macrophage delivery of nanozyme increases the efficacy of catalase remains unknown.
View Article and Find Full Text PDFPolymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor gamma (PPARgamma) agonists and PPARgamma/alpha dual agonists have been or are being developed for clinical use in the treatment of type 2 diabetes mellitus and hyperlipidemias. A common tumor finding in rodent carcinogenicity studies for these agonists is hemangioma/hemangiosarcoma in mice but not in rats. We hypothesized that increased endothelial cell proliferation may be involved in the mechanism of PPAR agonist-induced vascular tumors in mice, and we investigated the effects on endothelial cells utilizing troglitazone, the first clinically used PPARgamma agonist, in vivo and in vitro.
View Article and Find Full Text PDFPAMAM dendrimers are members of a class of polyamine polymers that demonstrate significant gene delivery ability. In this study, a selection of PAMAM dendrimers, spanning a range of sizes (generations 2, 4, 7, and 9) and transfection efficiencies, are characterized by various biophysical methods to search for structural properties that correlate with transfection. Measurements of colloidal properties (size and zeta potential) as a function of charge ratio reveal that highly transfecting dendrimer/DNA complexes have size/zeta potential values between 4 and 8.
View Article and Find Full Text PDFEukaryotic methionine aminopeptidase type 2 (MetAP2, MetAP2 gene (MAP2)), together with eukaryotic MetAP1, cotranslationally hydrolyzes initiator methionine from nascent polypeptides when the side chain of the second residue is small and uncharged. In this report, we took advantage of the yeast (Saccharomyces cerevisiae) map1 null strain's reliance on MetAP2 activity for the growth and viability to provide evidence of the first dominant negative mutant of eukaryotic MetAP2. Replacement of the conserved His(174) with alanine within the C-terminal catalytic domain of yeast MetAP2 eliminated detectable catalytic activity against a peptide substrate in vitro.
View Article and Find Full Text PDFPrevious transfection studies of cationic peptoid polymers (N-substituted polyglycines) and cationic lipitoid polymers (peptoid-phospholipid conjugates) have shown that only the polymers which possessed a repeating (cationic, hydrophobic, hydrophobic) substituent sequence are efficient in gene transfer in vitro. To determine if there is a physical attribute of peptoid and lipitoid complexes that correlates with efficient gene transfection, biophysical, and transfection measurements were performed with polymer:DNA complexes containing each of seven structurally diverse peptoid polymers and two lipitoids that possess different hydrophobic substituents. These measurements revealed that the biophysical properties of these complexes (size, zeta-potential, ethidium bromide exclusion) varied with polymer structure and complex (+/-) charge ratio but were not directly predictive of transfection efficiency.
View Article and Find Full Text PDFMethionine aminopeptidase type 1 (MetAP1) cotranslationally removes N-terminal methionine from nascent polypeptides, when the second residue in the primary structure is small and uncharged. Eukaryotic MetAP1 has an N-terminal zinc finger domain not found in prokaryotic MetAPs. We hypothesized that the zinc finger domain mediates the association of MetAP1 with the ribosomes and have reported genetic evidence that it is important for the normal function of MetAP1 in vivo.
View Article and Find Full Text PDFArch Biochem Biophys
February 2002
In Saccharomyces cerevisiae, the essential function of amino-terminal methionine removal is provided cotranslationally by two methionine aminopeptidases (MetAP1 and MetAP2). To examine the individual processing efficiency of each MetAP in vivo, we measured the degree of N-terminal methionine cleavage from a series of mutated glutathione-S-transferase (GST) proteins isolated from yeast wild-type, a map1 deletion strain, a map2 deletion strain, and a map1 deletion strain overexpressing the MAP2 gene. We found that MetAP1 plays the major role in N-terminal methionine removal in yeast.
View Article and Find Full Text PDF