To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.
View Article and Find Full Text PDFThe genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups.
View Article and Find Full Text PDFWe performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation.
View Article and Find Full Text PDFGenome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively.
View Article and Find Full Text PDFTo further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci.
View Article and Find Full Text PDFTo extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in susceptibility to T2D.
View Article and Find Full Text PDFBackground: Epigenetic markings acquired in early life may have phenotypic consequences later in development through their role in transcriptional regulation with relevance to the developmental origins of diseases including obesity. The goal of this study was to investigate whether DNA methylation levels at birth are associated with body size later in childhood.
Principal Findings: A study design involving two birth cohorts was used to conduct transcription profiling followed by DNA methylation analysis in peripheral blood.
Identifying natural allelic variation that underlies quantitative trait variation remains a fundamental problem in genetics. Most studies have employed either simple synthetic populations with restricted allelic variation or performed association mapping on a sample of naturally occurring haplotypes. Both of these approaches have some limitations, therefore alternative resources for the genetic dissection of complex traits continue to be sought.
View Article and Find Full Text PDFA number of linkage studies have previously implicated the region of chromosome 13q34 in schizophrenia. Chumakov and colleagues (2002) identified a gene complex called G72 (now termed D-amino acid oxidase activator: DAOA)/G30 in this region and performed association analyses of the DAOA/G30 as well as the D-amino-acid oxidase (DAAO) gene with schizophrenia. DAAO oxidizes D-serine, a potent activator of the N-methyl-D-aspartate (NMDA) type glutamate receptor in the human brain whereas the DAOA protein is considered an activator of DAAO.
View Article and Find Full Text PDFA possible involvement of oxidative stress in the pathophysiology of tardive dyskinesia (TD) has previously been proposed (reviewed in [Andreassen, O.A., Jorgensen, H.
View Article and Find Full Text PDFBackground: Previous work with animal models of psychosis, human genetic studies, and human post-mortem gene expression studies implicate the 14-3-3 family of genes in schizophrenia. The 14-3-3 genes code for a family of proteins that bind to and regulate other proteins, and they modulate neurodevelopment, cell-division, signal transduction and gene transcription.
Objective: To explore the role of five 14-3-3 isoforms (beta, gamma, epsilon, zeta, and eta) in schizophrenia by: (1) comparing mRNA levels in post-mortem brain from schizophrenic, bipolar and control subjects and (2) assessing genetic association with schizophrenia in both case-control and nuclear family samples.
The human p53 tumor suppressor gene (TP53) is considered as a candidate susceptibility gene for schizophrenia because of its functions in neurodevelopment. To test for an association between TP53 and schizophrenia, both the case-control study and the transmission disequilibrium test (TDT) were performed on genotype data from eight polymorphisms in TP53. Our samples included 286 Toronto schizophrenia cases and 264 controls, and 163 Portuguese nuclear families.
View Article and Find Full Text PDFObjective: Oxidative stress such as free radical-mediated neuronal dysfunction may be involved in the pathophysiology of schizophrenia. The human glutathione peroxidase (GPX1) is a selenium-dependent enzyme, which plays an important role in the detoxification of free radicals. We therefore hypothesized that the GPX1 gene, which is located on chromosome 3p21.
View Article and Find Full Text PDFBackground: Both microarray and candidate molecule studies have demonstrated that protein and mRNA expression of syntaxin and other genes involved in synaptic function are altered in the cerebral cortex of patients with schizophrenia.
Methods: Genetic association between polymorphic markers in the syntaxin 1A gene and schizophrenia was assessed in a matched case-control sample of 192 pairs, and in an independent sample of 238 nuclear families.
Results: In the family-based sample, a significant genetic association was found between schizophrenia and one of the four single nucleotide polymorphisms (SNPs) tested: an intron 7 SNP (transmission disequilibrium test [TDT] chi(2) = 5.
Am J Med Genet B Neuropsychiatr Genet
May 2003
The N-methyl-d-aspartate glutamate receptors (NMDAR) act in the CNS as regulators of the release of neurotransmitters such as dopamine, noradrenaline, acetylcholine, and GABA. It has been suggested that a weakened glutamatergic tone increases the risk of sensory overload and of exaggerated responses in the monoaminergic system, which is consistent with the symptomatology of schizophrenia. We studied two silent polymorphisms in GRIN1.
View Article and Find Full Text PDFObjectives: The serotonin 2A receptor gene (5-HT2A) is of great interest for research in neuropsychiatric disorders based on the observation that various neuroleptic agents and antidepressants bind with relatively high affinity at 5-HT2A receptors, and the fact that the receptor density in platelets tends to increase in depression. To test for the presence of association between 5-HT2A and bipolar disorder (BP), we studied a large number of triad families having probands affected with DSM-IV bipolar I (BPI), bipolar II (BPII) or schizoaffective disorder, bipolar type.
Methods: Two polymorphisms of 5-HT2A, 102T/C, and His452Tyr were analyzed in the 274 bipolar triad families.
Background: Based on the dopamine hypothesis, the dopamine D1 receptor gene (DRD1) is considered to be a good candidate gene for bipolar disorder (BP).
Methods: In our study, three polymorphisms of the DRD1 gene, -800T/C, -48A/G, and 1403T/C, were analyzed in 286 BP trios. Both the transmission disequilibrium test (TDT) and haplotype TDT were performed on the genotype data to test for the presence of linkage disequilibrium between DRD1 and bipolar disorder.