Publications by authors named "Joseph Tamm"

Astrocytes are crucial to brain homeostasis, yet their changes along the spatiotemporal progression of Alzheimer's disease (AD) neuropathology remain unexplored. Here we performed single-nucleus RNA sequencing of 628,943 astrocytes from five brain regions representing the stereotypical progression of AD pathology across 32 donors spanning the entire normal aging to severe AD continuum. We mapped out several unique astrocyte subclusters that exhibited varying responses to neuropathology across the AD-vulnerable neural network (spatial axis) or AD pathology stage (temporal axis).

View Article and Find Full Text PDF

Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia.

View Article and Find Full Text PDF

Introduction: Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and APOE-linked differences remain unclear.

Methods: We performed laser capture microdissection of amyloid beta (Aβ) plaques, the 50 μm halo around them, tangles with the 50 μm halo around them, and areas distant (> 50 μm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing.

Results: Aβ plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes.

View Article and Find Full Text PDF

Introduction: Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and -linked differences remain unclear.

Methods: We performed laser capture microdissection of Aβ plaques, the 50μm halo around them, tangles with the 50μm halo around them, and areas distant (>50μm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing.

Results: Aβ plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes.

View Article and Find Full Text PDF

Tau pathobiology has emerged as a key component underlying Alzheimer's disease (AD) progression; however, human neuronal models have struggled to recapitulate tau phenomena observed . Here, we aimed to define the minimal requirements to achieve endogenous tau aggregation in functional neurons utilizing human induced pluripotent stem cell (hiPSC) technology. Optimized hiPSC-derived cortical neurons seeded with AD brain-derived competent tau species or recombinant tau fibrils displayed increases in insoluble, endogenous tau aggregates.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a common neurodegenerative disease with poor prognosis. New options for drug discovery targets are needed. We developed an imaging based arrayed CRISPR method to interrogate the human genome for modulation of in vitro correlates of AD features, and used this to assess 1525 human genes related to tau aggregation, autophagy and mitochondria.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how the multimodal antidepressant vortioxetine affects biological systems linked to major depressive disorder, focusing on its unique cognitive benefits compared to traditional antidepressants.
  • - Results indicate that vortioxetine regulates similar biological systems in both mice and rats, impacting important areas like neuroplasticity and transcriptional regulation across various brain regions and treatment methods.
  • - The findings suggest that vortioxetine's ability to enhance cognitive function may stem from its influence on networks involved in synaptic transmission and neurodevelopment, highlighting its potential for treating depression and improving cognitive performance.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is strongly associated with microglia-induced neuroinflammation. Particularly, Aβ plaque-associated microglia take on an "activated" morphology. However, the function and phenotype of these Aβ plaque-associated microglia are not well understood.

View Article and Find Full Text PDF

The multimodal antidepressant vortioxetine displays an antidepressant profile distinct from those of conventional selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) and possesses cognitive-enhancing properties in preclinical and clinical studies. Recent studies have begun to investigate molecular mechanisms that may differentiate vortioxetine from other antidepressants. Acute studies in adult rats and chronic studies in a middle-aged mouse model reveal upregulation of several markers that play a central role in synaptic plasticity.

View Article and Find Full Text PDF

Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies.

View Article and Find Full Text PDF

Cognitive decline occurs during healthy aging, even in middle-aged subjects, via mechanisms that could include reduced stem cell proliferation, changed growth factor expression and/or reduced expression of synaptic plasticity genes. Although antidepressants alter these mechanisms in young rodents, their effects in older animals are unclear. In middle-aged mice, we examined the effects of a selective serotonin reuptake inhibitor (fluoxetine) and a multimodal antidepressant (vortioxetine) on cognitive and affective behaviors, brain stem cell proliferation, growth factor and gene expression.

View Article and Find Full Text PDF

The biological underpinnings of borderline personality disorder (BPD) and its psychopathology including states of aversive tension and dissociation is poorly understood. Our goal was to examine transcriptional changes associated with states of tension or dissociation within individual patients in a pilot study. Dissociation is not only a critical symptom of BPD but has also been associated with higher risk for self-mutilation and depression.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) activate heterotrimeric G-proteins (G(i)-, G(s)-, G(q)-, or G(12)-like) to generate specific intracellular responses, depending on the receptor/G-protein coupling. The aim was to enable a majority of GPCRs to generate a predetermined output by signaling through a single G-protein-supported pathway. The authors focused on calcium responses as the output, then engineered Galpha(q) to promote promiscuous receptor interactions.

View Article and Find Full Text PDF