Publications by authors named "Joseph T Gwin"

High-dosage motor practice can significantly contribute to achieving functional recovery after a stroke. Performing rehabilitation exercises at home and using, or attempting to use, the stroke-affected upper limb during Activities of Daily Living (ADL) are effective ways to achieve high-dosage motor practice in stroke survivors. This paper presents a novel technological approach that enables 1) detecting goal-directed upper limb movements during the performance of ADL, so that timely feedback can be provided to encourage the use of the affected limb, and 2) assessing the quality of motor performance during in-home rehabilitation exercises so that appropriate feedback can be generated to promote high-quality exercise.

View Article and Find Full Text PDF

The objective of this pilot study was to test the feasibility of automating the detection of abdominal free fluid in focused assessment with sonography for trauma (FAST) examinations. Perihepatic views from 10 FAST examinations with positive results and 10 FAST examinations with negative results were used. The sensitivity and specificity compared to manual classification by trained physicians was evaluated.

View Article and Find Full Text PDF

This study demonstrated the feasibility of a device for monitoring pressure relief maneuvers and physical activity for wheelchair users. The device counts the number of wheel pushes based on wheelchair acceleration and measures pressure relief maneuvers using a seat sensor consisting of three force sensing resistors (FSRs). To establish the feasibility of the seat sensor for the detection of pressure relief maneuvers, 10 wheelchair users and 10 non-disabled controls completed a series of wheelchair depression raises, forward trunk leans, and lateral trunk leans.

View Article and Find Full Text PDF

Background: The Unified Huntington's Disease Rating Scale (UHDRS) is the principal means of assessing motor impairment in Huntington disease but is subjective and generally limited to in-clinic assessments.

Objective: To evaluate the feasibility and ability of wearable sensors to measure motor impairment in individuals with Huntington disease in the clinic and at home.

Methods: Participants with Huntington disease and controls were asked to wear five accelerometer-based sensors attached to the chest and each limb for standardized, in-clinic assessments and for one day at home.

View Article and Find Full Text PDF

Background: Considerable effort has been devoted to mapping the functional and effective connectivity of the human brain, but these efforts have largely been limited to tasks involving stationary subjects. Recent advances with high-density electroencephalography (EEG) and Independent Components Analysis (ICA) have enabled study of electrocortical activity during human locomotion. The goal of this work was to measure the effective connectivity of cortical activity during human standing and walking.

View Article and Find Full Text PDF

Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.

View Article and Find Full Text PDF

Coherence between electroencephalography (EEG) recorded on the scalp above the motor cortex and electromyography (EMG) recorded on the skin of the limbs is thought to reflect corticospinal coupling between motor cortex and muscle motor units. Beta-range (13-30 Hz) corticomuscular coherence has been extensively documented during static force output while gamma-range (31-45 Hz) coherence has been linked to dynamic force output. However, the explanation for this beta-to-gamma coherence shift remains unclear.

View Article and Find Full Text PDF

Background: High-density electroencephalography (EEG) with active electrodes allows for monitoring of electrocortical dynamics during human walking but movement artifacts have the potential to dominate the signal. One potential method for recovering cognitive brain dynamics in the presence of gait-related artifact is the Weighted Phase Lag Index.

Methods: We tested the ability of Weighted Phase Lag Index to recover event-related potentials during locomotion.

View Article and Find Full Text PDF

Background: Electroencephalography (EEG) combined with independent component analysis enables functional neuroimaging in dynamic environments including during human locomotion. This type of functional neuroimaging could be a powerful tool for neurological rehabilitation. It could enable clinicians to monitor changes in motor control related cortical dynamics associated with a therapeutic intervention, and it could facilitate noninvasive electrocortical control of devices for assisting limb movement to stimulate activity dependent plasticity.

View Article and Find Full Text PDF

Decoding human motor tasks from single trial electroencephalography (EEG) signals can help scientists better understand cortical neurophysiology and may lead to brain computer interfaces (BCI) for motor augmentation. Spatial characteristics of EEG have been used to distinguish left from right hand motor imagery and motor action. We used independent component analysis (ICA) of EEG to distinguish right knee action from right ankle action.

View Article and Find Full Text PDF

We have recently developed a mobile brain imaging method (MoBI), that allows for simultaneous recording of brain and body dynamics of humans actively behaving in and interacting with their environment. A mobile imaging approach was needed to study cognitive processes that are inherently based on the use of human physical structure to obtain behavioral goals. This review gives examples of the tight coupling between human physical structure with cognitive processing and the role of supraspinal activity during control of human stance and locomotion.

View Article and Find Full Text PDF

Human cognition has been shaped both by our body structure and by its complex interactions with its environment. Our cognition is thus inextricably linked to our own and others' motor behavior. To model brain activity associated with natural cognition, we propose recording the concurrent brain dynamics and body movements of human subjects performing normal actions.

View Article and Find Full Text PDF

Recent findings suggest that human cortex is more active during steady-speed unperturbed locomotion than previously thought. However, techniques that have been used to image the brain during locomotion lack the temporal resolution necessary to assess intra-stride cortical dynamics. Our aim was to determine if electrocortical activity is coupled to gait cycle phase during steady-speed human walking.

View Article and Find Full Text PDF

The performance characteristics of football helmets are currently evaluated by simulating head impacts in the laboratory using a linear drop test method. To encourage development of helmets designed to protect against concussion, the National Operating Committee for Standards in Athletic Equipment recently proposed a new headgear testing methodology with the goal of more closely simulating in vivo head impacts. This proposed test methodology involves an impactor striking a helmeted headform, which is attached to a nonrigid neck.

View Article and Find Full Text PDF

Although human cognition often occurs during dynamic motor actions, most studies of human brain dynamics examine subjects in static seated or prone conditions. EEG signals have historically been considered to be too noise prone to allow recording of brain dynamics during human locomotion. Here we applied a channel-based artifact template regression procedure and a subsequent spatial filtering approach to remove gait-related movement artifact from EEG signals recorded during walking and running.

View Article and Find Full Text PDF

Although connections between cognitive deficits and age-associated brain differences have been elucidated, relationships with motor performance are less well understood. Here, we broadly review age-related brain differences and motor deficits in older adults in addition to cognition-action theories. Age-related atrophy of the motor cortical regions and corpus callosum may precipitate or coincide with motor declines such as balance and gait deficits, coordination deficits, and movement slowing.

View Article and Find Full Text PDF

Objective: The aims of this study were to quantify the sensitivity of various biomechanical measures (linear acceleration, rotational acceleration, impact duration, and impact location) of head impact to the clinical diagnosis of concussion in United States football players and to develop a novel measure of head impact severity combining these measures into a single score that better predicts the incidence of concussion.

Methods: On-field head impact data were collected from 449 football players at 13 organizations (n = 289,916) using in-helmet systems of six single-axis accelerometers. Concussions were diagnosed by medical staff and later associated with impact data.

View Article and Find Full Text PDF

Objective: To compare the frequency and magnitude of head impacts between National Collegiate Athletic Association Division I and American high school football players. The long-term goal is to correlate impact forces with injury patterns, leading to improvements in protective headgear.

Methods: The helmets of football players at the University of Oklahoma (n = 40) and Casady High School (n = 16) were instrumented with the Head Impact Telemetry System (Simbex, Lebanon, NH).

View Article and Find Full Text PDF