Publications by authors named "Joseph Stoner"

The Antarctic Circumpolar Current (ACC) represents the world's largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial-interglacial cycles, the long-term evolution of the ACC is poorly known.

View Article and Find Full Text PDF

The strength of the geomagnetic field has decreased rapidly over the past two centuries, coinciding with an increasing field asymmetry due to the growth of the South Atlantic Anomaly. The underlying processes causing the decrease are debated, which has led to speculation that the field is about to reverse. Here, we present a geomagnetic field model based on indirect observations over the past 9,000 y and identify potential ancient analogs.

View Article and Find Full Text PDF

Abrupt warming events recorded in Greenland ice cores known as Dansgaard-Oeschger (DO) interstadials are linked to changes in tropical circulation during the last glacial cycle. Corresponding variations in South American summer monsoon (SASM) strength are documented, most commonly, in isotopic records from speleothems, but less is known about how these changes affected precipitation and Andean glacier mass balance. Here we present a sediment record spanning the last ~50 ka from Lake Junín (Peru) in the tropical Andes that has sufficient chronologic precision to document abrupt climatic events on a centennial-millennial time scale.

View Article and Find Full Text PDF

Global warming due to anthropogenic factors can be amplified or dampened by natural climate oscillations, especially those involving sea surface temperatures (SSTs) in the North Atlantic which vary on a multidecadal scale (Atlantic multidecadal variability, AMV). Because the instrumental record of AMV is short, long-term behavior of AMV is unknown, but climatic teleconnections to regions beyond the North Atlantic offer the prospect of reconstructing AMV from high-resolution records elsewhere. Annually resolved titanium from an annually laminated sedimentary record from Ellesmere Island, Canada, shows that the record is strongly influenced by AMV via atmospheric circulation anomalies.

View Article and Find Full Text PDF

New radiocarbon and sedimentological results from the Gulf of Alaska document recurrent millennial-scale episodes of reorganized Pacific Ocean ventilation synchronous with rapid Cordilleran Ice Sheet discharge, indicating close coupling of ice-ocean dynamics spanning the past 42,000 years. Ventilation of the intermediate-depth North Pacific tracks strength of the Asian monsoon, supporting a role for moisture and heat transport from low latitudes in North Pacific paleoclimate. Changes in carbon-14 age of intermediate waters are in phase with peaks in Cordilleran ice-rafted debris delivery, and both consistently precede ice discharge events from the Laurentide Ice Sheet, known as Heinrich events.

View Article and Find Full Text PDF

Organisms use a variety of environmental cues to orient their movements in three-dimensional space. Here, we show that the upward movement of young Chinook salmon () emerging from gravel nests is influenced by the geomagnetic field. Fish in the ambient geomagnetic field travelled farther upwards through substrate than did fish tested in a field with the vertical component inverted.

View Article and Find Full Text PDF

Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St.

View Article and Find Full Text PDF

Varying levels of boreal summer insolation and associated Earth system feedbacks led to differing climate and ice-sheet states during late-Quaternary interglaciations. In particular, Marine Isotope Stage (MIS) 11 was an exceptionally long interglaciation and potentially had a global mean sea level 6 to 13 metres above the present level around 410,000 to 400,000 years ago, implying substantial mass loss from the Greenland ice sheet (GIS). There are, however, no model simulations and only limited proxy data to constrain the magnitude of the GIS response to climate change during this 'super interglacial', thus confounding efforts to assess climate/ice-sheet threshold behaviour and associated sea-level rise.

View Article and Find Full Text PDF

To ascertain the response of the southern Greenland Ice Sheet (GIS) to a boreal summer climate warmer than at present, we explored whether southern Greenland was deglaciated during the Last Interglacial (LIG), using the Sr-Nd-Pb isotope ratios of silt-sized sediment discharged from southern Greenland. Our isotope data indicate that no single southern Greenland geologic terrane was completely deglaciated during the LIG, similar to the Holocene. Differences in sediment sources during the LIG relative to the early Holocene denote, however, greater southern GIS retreat during the LIG.

View Article and Find Full Text PDF

We analyzed the sedimentological characteristics and magnetic properties of cores from the three basins of Clear Lake, California, USA, to assess the depositional response to a series of land use changes that occurred in the watershed over the 20th century. Results indicate that distinct and abrupt shifts in particle size, magnetic concentration/mineralogy, and redox conditions occur concurrently with a variety of ecological and chemical changes in lake bed sediments. This coincidence of events occurred around 1927, a datum determined by an abrupt increase in total mercury (Hg) in Clear Lake cores and the known initiation of open-pit Hg mining at the Sulphur Bank Mercury Mine, confirmed by 210Pb dating.

View Article and Find Full Text PDF
Article Synopsis
  • Marine sediments from the Chilean continental margin reveal changes in Pacific Ocean water properties and the extent of the Patagonian ice sheet since the last glacial period.
  • The data indicates a synchronized pattern of sea surface temperature changes linked to shifts in sea ice, wind patterns, and ocean currents.
  • Proxy measurements suggest that while oceanographic variations align with ice sheet changes, the glaciers respond with a time lag of up to 1000 years, contributing to inconsistencies in southern South America's terrestrial records.
View Article and Find Full Text PDF