Publications by authors named "Joseph Smerdon"

Quasicrystals differ from conventional crystals and amorphous materials in that they possess long-range order without periodicity. They exhibit orders of rotational symmetry which are forbidden in periodic crystals, such as five-, ten-, and twelve-fold, and their structures can be described with complex aperiodic tilings such as Penrose tilings and Stampfli-Gaehler tilings. Previous theoretical work explored the structure and properties of a hypothetical four-fold symmetric quasicrystal-the so-called Fibonacci square grid.

View Article and Find Full Text PDF

We demonstrate that rectification ratios (RR) of ≳250 (≳1000) at biases of 0.5 V (1.2 V) are achievable at the two-molecule limit for donor-acceptor bilayers of pentacene on C60 on Cu using scanning tunneling spectroscopy and microscopy.

View Article and Find Full Text PDF

We demonstrate the self-assembly of C60 and pentacene (Pn) molecules into acceptor-donor heterostructures which are well-ordered and--despite the high degree of symmetry of the constituent molecules--chiral. Pn was deposited on Cu(111) to monolayer coverage, producing the random-tiling (R) phase as previously described. Atop R-phase Pn, postdeposited C60 molecules cause rearrangement of the Pn molecules into domains based on chiral supramolecular "pinwheels".

View Article and Find Full Text PDF

We have investigated the initial stages of growth and the electronic structure of C(60) molecules on graphene grown epitaxially on SiC(0001) at the single-molecule level using cryogenic ultrahigh vacuum scanning tunneling microscopy and spectroscopy. We observe that the first layer of C(60) molecules self-assembles into a well-ordered, close-packed arrangement on graphene upon molecular deposition at room temperature while exhibiting a subtle C(60) superlattice. We measure a highest occupied molecular orbital-lowest unoccupied molecular orbital gap of ∼3.

View Article and Find Full Text PDF