The impending collapse of Moore-like growth of computational power has spurred the development of alternative computing architectures, such as optical or electro-optical computing. However, many of the current demonstrations in literature are not compatible with the dominant complementary metal-oxide semiconductor (CMOS) technology used in large-scale manufacturing today. Here, inspired by the famous Esaki diode demonstrating negative differential resistance (NDR), we show a fully CMOS-compatible electro-optical memory device, based on a new type of NDR diode.
View Article and Find Full Text PDFWe study experimentally the effect of oxide removal on the sub-bandgap photodetection in silicon waveguides at the telecom wavelength regime. Depassivating the device allows for the enhancement of the quantum efficiency by about 2-3 times. Furthermore, the propagation loss within the device is significantly reduced by the oxide removal.
View Article and Find Full Text PDFWe report an on-chip integrated metal graphene-silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 μm and 7% internal quantum efficiency. This is one order of magnitude higher than metal-silicon Schottky photodetectors operated in the same conditions.
View Article and Find Full Text PDFWe describe a platform for the fabrication of smooth waveguides and ultrahigh-quality-factor (Q factor) silicon resonators using a modified local oxidation of silicon (LOCOS) technique. Unlike the conventional LOCOS process, our approach allows the fabrication of nearly planarized structures, supporting a multilayer silicon photonics configuration. Using this approach we demonstrate the fabrication and the characterization of a microdisk resonator with an intrinsic Q factor that is one of the highest Q factors achieved with a compact silicon-on-insulator platform.
View Article and Find Full Text PDFWe experimentally demonstrate for the first time a nanoscale resistive random access memory (RRAM) electronic device integrated with a plasmonic waveguide providing the functionality of optical readout. The device fabrication is based on silicon on insulator CMOS compatible approach of local oxidation of silicon, which enables the realization of RRAM and low optical loss channel photonic waveguide at the same fabrication step. This plasmonic device operates at telecom wavelength of 1.
View Article and Find Full Text PDFIn this paper we study the optimization of interleaved Mach-Zehnder silicon carrier depletion electro-optic modulator. Following the simulation results we demonstrate a phase shifter with the lowest figure of merit (modulation efficiency multiplied by the loss per unit length) 6.7 V-dB.
View Article and Find Full Text PDFWe propose an ultrathin solar cell architecture design which incorporates two periodic layers of metallic and dielectric gratings. Both layers couple the incident light to photonic and plasmonic modes, thus increasing absorption within the cell. The relative position between the two gratings is examined, and is shown to have significant impact on absorption.
View Article and Find Full Text PDFWe experimentally demonstrate an on-chip compact and simple to fabricate silicon Schottky photodetector for telecom wavelengths operating on the basis of internal photoemission process. The device is realized using CMOS compatible approach of local-oxidation of silicon, which enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. The photodetector demonstrates enhanced internal responsivity of 12.
View Article and Find Full Text PDFUsing cultured Aplysia neurons we recently reported on the development of a novel approach in which an extracellular, non-invasive multi-electrode-array system provides multisite, attenuated, intracellular recordings of subthreshold synaptic potentials, and action potentials (APs), the so called "IN-CELL" recording configuration (to differentiate it from intracellular recordings). Because of its non-invasive nature, the configuration can be used for long term semi intracellular electrophysiological monitoring of APs and synaptic potentials. Three principals converge to generate the IN-CELL configuration: (a) engulfment of approximately 1 μm size gold mushroom-shaped microelectrodes (gMμE) by the neurons, (b) formation of high seal resistance between the cell's plasma membrane and the engulfed gMμE, and (c), autonomous localized increased conductance of the membrane patch facing the gMμE.
View Article and Find Full Text PDFWe experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact.
View Article and Find Full Text PDFHere we report on the development of a novel neuroelectronic interface consisting of an array of noninvasive gold-mushroom-shaped microelectrodes (gMmicroEs) that practically provide intracellular recordings and stimulation of many individual neurons, while the electrodes maintain an extracellular position. The development of this interface allows simultaneous, multisite, long-term recordings of action potentials and subthreshold potentials with matching quality and signal-to-noise ratio of conventional intracellular sharp glass microelectrodes or patch electrodes. We refer to the novel approach as "in-cell recording and stimulation by extracellular electrodes" to differentiate it from the classical intracellular recording and stimulation methods.
View Article and Find Full Text PDFCurrent extracellular multisite recordings suffer from low signal-to-noise ratio, limiting the monitoring to action potentials, and preclude detection of subthreshold synaptic potentials. Here we report an approach to induce Aplysia californica neurons to actively engulf protruding microelectrodes, providing 'in-cell recordings' of subthreshold synaptic and action potentials with signal-to-noise ratio that matches that of conventional intracellular recordings. Implementation of this approach may open new vistas in neuroscience and biomedical applications.
View Article and Find Full Text PDFMicroelectrode arrays increasingly serve to extracellularly record in parallel electrical activity from many excitable cells without inflicting damage to the cells by insertion of microelectrodes. Nevertheless, apart from rare cases they suffer from a low signal to noise ratio. The limiting factor for effective electrical coupling is the low seal resistance formed between the plasma membrane and the electronic device.
View Article and Find Full Text PDFInterfacing neurons with micro- and nano-electronic devices has been a subject of intense study over the last decade. One of the major problems in assembling efficient neuro-electronic hybrid systems is the weak electrical coupling between the components. This is mainly attributed to the fundamental property of living cells to form and maintain an extracellular cleft between the plasma membrane and any substrate to which they adhere.
View Article and Find Full Text PDFThis work investigates the feasibility of transducing molecular-recognition events into a measurable potentiometric signal. It is shown for the first time that biorecognition of acetylcholine (ACh) can be translated to conformational changes in the enzyme, acetylcholine-esterase (AChE), which in turn induces a measurable change in surface potential. Our results show that a highly sensitive detector for ACh can be obtained by the dilute assembly of AChE on a floating gate derived field effect transistor (FG-FET).
View Article and Find Full Text PDFThe employment of standard CMOS technology to produce semiconductor chips for recording neuronal activity or for its future use to link neurons and transistors under in vivo conditions, suffers from a low signal to noise ratio. Using Aplysia neurons cultured on CMOS floating gate field effect transistors, we report here that minor mechanical pressure applied to restricted neuronal compartment that face the sensing pad induces two independent alterations: (a) increase in the seal resistance formed between the neuron's membrane and the sensing pad, and (b) increase the conductance of the membrane patch that faces the sensing pad. These alterations (from approximately 0.
View Article and Find Full Text PDFUnderstanding the mechanisms that generate field potentials (FPs) by neurons grown on semiconductor chips is essential for implementing neuro-electronic devices. Earlier studies emphasized that FPs are generated by current flow between differentially expressed ion channels on the membranes facing the chip surface, and those facing the culture medium in electrically compact cells. Less is known, however, about the mechanisms that generate FPs by action potentials (APs) that propagate along typical non-isopotential neurons.
View Article and Find Full Text PDFA bioelectronic hybrid system for the detection of acetylcholine esterase (AChE) catalytic activity was assembled by way of immobilizing the enzyme to the gate surface of an ion-sensitive field-effect transistor (ISFET). Photometric methods used to characterize bonded enzyme and linker layers on silicon substrates confirm the existence of a stable amino-cyanurate containing AChE monolayer. The transduction of the enzyme-functionalized ISFET, in ionic solutions, is detected in response to application of acetylcholine (ACh).
View Article and Find Full Text PDFWe report the realization of electrical coupling between neurons and depletion type floating gate (FG) p-channel MOS transistors. The devices were realized in a shortened 0.5 microm CMOS technology.
View Article and Find Full Text PDF