A 63-year-old man presented with two days of palpable purpura over the right anterior shin and calf with notable point tenderness on the distal mid-calf without any palpable deep abnormality. Localized right calf pain worsened with walking and was associated with headache, chills, fatigue, and low-grade fevers. A punch biopsy of the anterior right lower leg showed necrotizing neutrophilic vasculitis of superficial and deep vessels.
View Article and Find Full Text PDFThe intracellular Ca(2+) concentration ([Ca(2+)](i)) in skeletal muscles must be rapidly regulated during the excitation-contraction-relaxation process. However, the signalling components involved in such rapid Ca(2+) movement are not fully understood. Here we report that mice deficient in the newly identified PtdInsP (phosphatidylinositol phosphate) phosphatase MIP/MTMR14 (muscle-specific inositol phosphatase) show muscle weakness and fatigue.
View Article and Find Full Text PDFThe sympathetic nervous system is a critical regulator of cardiac function (heart rate and contractility) in health and disease. Sympathetic nervous system agonists bind to adrenergic receptors that are known to activate protein kinase A, which phosphorylates target proteins and enhances cardiac performance. Recently, it has been proposed that protein kinase A-mediated phosphorylation of the cardiac ryanodine receptor (the Ca(2+) release channel of the sarcoplasmic reticulum at a single residue, Ser2808) is a critical component of sympathetic nervous system regulation of cardiac function.
View Article and Find Full Text PDFIncreased phosphorylation of the cardiac ryanodine receptor (RyR)2 by protein kinase A (PKA) at the phosphoepitope encompassing Ser2808 has been advanced as a central mechanism in the pathogenesis of cardiac arrhythmias and heart failure. In this scheme, persistent activation of the sympathetic system during chronic stress leads to PKA "hyperphosphorylation" of RyR2-S2808, which increases Ca2+ release by augmenting the sensitivity of the RyR2 channel to diastolic Ca2+. This gain-of-function is postulated to occur with the unique participation of RyR2-S2808, and other potential PKA phosphorylation sites have been discarded.
View Article and Find Full Text PDF