Publications by authors named "Joseph Salatino"

Devices capable of recording or stimulating neuronal signals have created new opportunities to understand normal physiology and treat sources of pathology in the brain. However, it is possible that the tissue response to implanted electrodes may influence the nature of the signals detected or stimulated. In this study, we characterized structural and functional changes in deep layer pyramidal neurons surrounding silicon or polyimide-based electrodes implanted in the motor cortex of rats.

View Article and Find Full Text PDF

Intracortical brain interfaces are an ever evolving technology with growing potential for clinical and research applications. The chronic tissue response to these devices traditionally has been characterized by glial scarring, inflammation, oxidative stress, neuronal loss, and blood-brain barrier disruptions. The full complexity of the tissue response to implanted devices is still under investigation.

View Article and Find Full Text PDF

The use of implants that can electrically stimulate or record electrophysiological or neurochemical activity in nervous tissue is rapidly expanding. Despite remarkable results in clinical studies and increasing market approvals, the mechanisms underlying the therapeutic effects of neuroprosthetic and neuromodulation devices, as well as their side effects and reasons for their failure, remain poorly understood. A major assumption has been that the signal-generating neurons are the only important target cells of neural-interface technologies.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using implanted microelectrode arrays (MEAs) in the brain to improve our understanding of neural functions and create better treatments for neurodegenerative and psychiatric disorders.
  • It addresses challenges like glial encapsulation and tissue ingrowth, which can decrease the quality and lifespan of MEAs by obstructing microfluidic channels necessary for delivering therapeutic vectors.
  • The researchers tested three techniques to modify gene expression near the device-tissue interface using different vector delivery methods and found varying success based on factors like the depth of tissue injury.
View Article and Find Full Text PDF

In the version of this Review Article originally published, in Fig. 4b, the label 'Glutamate' was mistakenly duplicated and an arrow between a purinergic P2 receptor and a glutamate transporter was missing. The figure has now been updated in all versions of the Review Article.

View Article and Find Full Text PDF

Objective: Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations.

View Article and Find Full Text PDF

Microelectrode arrays implanted in the brain are increasingly used for the research and treatment of intractable neurological disease. However, local neuronal loss and glial encapsulation are known to interfere with effective integration and communication between implanted devices and brain tissue, where these observations are typically based on assessments of broad neuronal and astroglial markers. However, both neurons and astrocytes comprise heterogeneous cellular populations that can be further divided into subclasses based on unique functional and morphological characteristics.

View Article and Find Full Text PDF