Diverse antibody repertoires are generated through remote genomic interactions involving immunoglobulin variable (V), diversity (D) and joining (J) gene segments. How such interactions are orchestrated remains unknown. Here we develop a strategy to track V-DJ motion in B-lymphocytes.
View Article and Find Full Text PDFDuring B lymphocyte development, immunoglobulin heavy-chain variable (VH), diversity (DH), and joining (JH) segments assemble to generate a diverse antigen receptor repertoire. Here, we have marked the distal VH and DH-JH-Eμ regions with Tet-operator binding sites and traced their 3D trajectories in pro-B cells transduced with a retrovirus encoding Tet-repressor-EGFP. We found that these elements displayed fractional Langevin motion (fLm) due to the viscoelastic hindrance from the surrounding network of proteins and chromatin fibers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2012
Recent studies have identified a number of transcriptional regulators, including E2A, early B-cell factor 1 (EBF1), FOXO1, and paired box gene 5 (PAX5), that promote early B-cell development. However, how this ensemble of regulators mechanistically promotes B-cell fate remains poorly understood. Here we demonstrate that B-cell development in FOXO1-deficient mice is arrested in the common lymphoid progenitor (CLP) LY6D(+) cell stage.
View Article and Find Full Text PDFThere is now substantial evidence that the eukaryotic nucleus consists of highly organized structures. Among such structures are transcription factories that consist of an ensemble of genes recruited by the RNA polymerase machinery. Here we suggest that antigen receptor variable regions are similarly organized.
View Article and Find Full Text PDFMany steps in gene expression and mRNA biosynthesis are coupled to transcription elongation and organized through the C-terminal domain (CTD) of the large subunit of RNA polymerase II (RNAPII). We showed recently that Spt6, a transcription elongation factor and histone H3 chaperone, binds to the Ser2P CTD and recruits Iws1 and the REF1/Aly mRNA export adaptor to facilitate mRNA export. Here we show that Iws1 also recruits the HYPB/Setd2 histone methyltransferase to the RNAPII elongation complex and is required for H3K36 trimethylation (H3K36me3) across the transcribed region of the c-Myc, HIV-1, and PABPC1 genes in vivo.
View Article and Find Full Text PDF