Antioxidants (Basel)
April 2021
Metal oxide nanoparticles (NPs) have received a great deal of attention as potential theranostic agents. Despite extensive work on a wide variety of metal oxide NPs, few chemically active metal oxide NPs have received Food and Drug Administration (FDA) clearance. The clinical translation of metal oxide NP activity, which often looks so promising in preclinical studies, has not progressed as rapidly as one might expect.
View Article and Find Full Text PDFCerium oxide nanoparticles (CeNPs) exhibit redox capacity with efficacy in disease models of oxidative stress. Here we compare, in parallel, three CeNP formulations with distinct chemical stabilizers and size. assays revealed antioxidant activity from all the CeNPs, but when administered to mice with a reactive oxygen species (ROS) mediated model of multiple sclerosis, only custom-synthesized Cerion NRx (CNRx) citrate-EDTA stabilized CeNPs provided protection against disease.
View Article and Find Full Text PDFCerium oxide (CeO) nanoparticles (CeNPs) are potent antioxidants that are being explored as potential therapies for diseases in which oxidative stress plays an important pathological role. However, both beneficial and toxic effects of CeNPs have been reported, and the method of synthesis as well as physico-chemical, biological, and environmental factors can impact the ultimate biological effects of CeNPs. In the present study, we explored the effect of different ratios of citric acid (CA) and EDTA (CA/EDTA), which are used as stabilizers during synthesis of CeNPs, on the antioxidant enzyme-mimetic and biological activity of the CeNPs.
View Article and Find Full Text PDFCerium oxide nanoparticles (CeNPs) neutralize reactive oxygen and nitrogen species. Since oxidative stress plays a role in amyotrophic lateral sclerosis (ALS) in humans and in the SOD1 mouse model of ALS, we tested whether administration of CeNPs would improve survival and reduce disease severity in SOD1 transgenic mice. Twice a week intravenous treatment of SOD1 mice with CeNPs started at the onset of muscle weakness preserved muscle function and increased longevity in males and females.
View Article and Find Full Text PDFThe size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro.
View Article and Find Full Text PDFCerium oxide nanoparticles are potent antioxidants, based on their ability to either donate or receive electrons as they alternate between the +3 and +4 valence states. The dual oxidation state of ceria has made it an ideal catalyst in industrial applications, and more recently, nanoceria's efficacy in neutralizing biologically generated free radicals has been explored in biological applications. Here, we report the in vivo characteristics of custom-synthesized cerium oxide nanoparticles (CeNPs) in an animal model of immunological and free-radical mediated oxidative injury leading to neurodegenerative disease.
View Article and Find Full Text PDFThe overproduction of reactive oxygen species and the resulting damage are central to the pathology of many diseases. The study of the temporal and spatial accumulation of reactive oxygen species has been limited because of the lack of specific probes and techniques capable of continuous measurement. We demonstrate the use of a miniaturized electrochemical cytochrome c (Cyt c) biosensor for real-time measurements and quantitative assessment of superoxide production and inactivation by natural and engineered antioxidants in acutely prepared brain slices from mice.
View Article and Find Full Text PDFTo elucidate the cortical control of handwriting, we examined time-dependent statistical and correlational properties of simultaneously recorded 64-channel electroencephalograms (EEGs) and electromyograms (EMGs) of intrinsic hand muscles. We introduced a statistical method, which offered advantages compared to conventional coherence methods. In contrast to coherence methods, which operate in the frequency domain, our method enabled us to study the functional association between different neural regions in the time domain.
View Article and Find Full Text PDFWe examined time-dependent statistical properties of electromyographic (EMG) signals recorded from intrinsic hand muscles during handwriting. Our analysis showed that trial-to-trial neuronal variability of EMG signals is well described by the lognormal distribution clearly distinguished from the Gaussian (normal) distribution. This finding indicates that EMG formation cannot be described by a conventional model where the signal is normally distributed because it is composed by summation of many random sources.
View Article and Find Full Text PDFAn increase in PCO(2) in the arterial blood triggers immediate release of ATP from the ventral chemosensory site(s) on the surface of the medulla oblongata. Systemic hypoxia in anesthetized rats was also associated with increased ATP release on the ventral medullary surface. During both hypoxia and hypercapnia, ATP and possibly other gliotransmitters released in the ventral medulla seemed to enhance cardiorespiratory responses to these stressors, and some of this ATP was proposed to be derived from astrocytes.
View Article and Find Full Text PDFA comparative analysis of chemosensory systems in invertebrates and vertebrates reveals that different animals use similar strategies when sensing CO(2) to control respiration. A variety of animals possess neurons that respond to changes in pH. These respiratory chemoreceptor neurons seem to rely largely on pH-dependent inhibition of potassium channels, but the channels do not appear to be uniquely adapted to detect pH.
View Article and Find Full Text PDFWe discuss the influence of astrocytes on respiratory function, particularly central CO2 chemosensitivity. Fluorocitrate (FC) poisons astrocytes, and studies in intact animals using FC provide strong evidence that disrupting astrocytic function can influence CO2 chemosensitivity and ventilation. Gap junctions interconnect astrocytes and contribute to K+ homeostasis in the extracellular fluid (ECF).
View Article and Find Full Text PDFHandwriting--one of the most important developments in human culture--is also a methodological tool in several scientific disciplines, most importantly handwriting recognition methods, graphology and medical diagnostics. Previous studies have relied largely on the analyses of handwritten traces or kinematic analysis of handwriting; whereas electromyographic (EMG) signals associated with handwriting have received little attention. Here we show for the first time, a method in which EMG signals generated by hand and forearm muscles during handwriting activity are reliably translated into both algorithm-generated handwriting traces and font characters using decoding algorithms.
View Article and Find Full Text PDFWe used epifluorescence microscopy and a voltage-sensitive dye, di-8-ANEPPS, to study changes in membrane potential during hypercapnia with or without synaptic blockade in chemosensory brain stem nuclei: the locus coeruleus (LC), the nucleus of the solitary tract, lateral paragigantocellularis nucleus, raphé pallidus, and raphé obscurus and, in putative nonchemosensitive nuclei, the gigantocellularis reticular nucleus and the spinotrigeminal nucleus. We studied the response to hypercapnia in LC cells to evaluate the performance characteristics of the voltage-sensitive dye. Hypercapnia depolarized many LC cells and the voltage responses to hypercapnia were diminished, but not eradicated, by synaptic blockade (there were intrinsically CO2-sensitive cells in the LC).
View Article and Find Full Text PDFThe astrocyte-neuronal lactate-shuttle hypothesis posits that lactate released from astrocytes into the extracellular space is metabolized by neurons. The lactate released should alter extracellular pH (pHe), and changes in pH in central chemosensory regions of the brainstem stimulate ventilation. Therefore, we assessed the impact of disrupting the lactate shuttle by administering 100 microM alpha-cyano-4-hydroxy-cinnamate (4-CIN), a dose that blocks the neuronal monocarboxylate transporter (MCT) 2 but not the astrocytic MCTs (MCT1 and MCT4).
View Article and Find Full Text PDFWe investigated the possibility that astrocytes modify the extracellular milieu and thereby modify the activity of central CO2 chemosensory neurons. The ability of astrocytes to modify the extracellular milieu is heterogeneously distributed among chemosensory sites that have, at least nominally, the same function. The differences in astrocytic activity may make some central chemosensory sites better attuned to the local brain tissue environment and other chemosensory sites better suited to integrate chemosensory activity from multiple sites within and outside the central nervous system.
View Article and Find Full Text PDFSalvia divinorum is a hallucinogenic plant used by the Mazatec Indians of Mexico for traditional spiritual ceremonies. The active constituent, salvinorin A, induces profound hallucinations, however the biological mechanism for this action is not known. Affinity-binding studies suggest that the biologic activity of salvinorin A involves the kappa-opioid receptor.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2005
We compared the response to hypercapnia (10%) in neurons and astrocytes among a distinct area of the retrotrapezoid nucleus (RTN), the mediocaudal RTN (mcRTN), and more intermediate and rostral RTN areas (irRTN) in medullary brain slices from neonatal rats. Hypercapnic acidosis (HA) caused pH(o) to decline from 7.45 to 7.
View Article and Find Full Text PDFRespir Physiol Neurobiol
November 2005
The ventilatory response to CO2 changes as a function of neonatal development. In rats, a ventilatory response to CO2 is present in the first 5 days of life, but this ventilatory response to CO2 wanes and reaches its lowest point around postnatal day 8. Subsequently, the ventilatory response to CO2 rises towards adult levels.
View Article and Find Full Text PDFAcupuncture and acupressure points correlate well with sites on the body that have low transcutaneous electrical resistance (TER). Using lightly sedated, adult Sprague-Dawley rats, we identified an acupoint (i.e.
View Article and Find Full Text PDFRespir Physiol Neurobiol
September 2004
We tested the hypothesis that focally perfusing carbenoxolone, which blocks gap junctions, into the nucleus tractus solitarius (NTS) would reduce the ventilatory response to CO(2). We measured minute ventilation (V(E)), tidal volume (V(T)) and respiratory frequency (F(R)) responses to increasing concentrations of inspired CO(2) (F(I)(CO(2) = 0-8%) in rats during wakefulness. Focal perfusion of acetazolamide (10 microM) into the NTS increased V(E) and V(T) during exposure to room air.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2004
We tested the hypothesis that carbenoxolone, a pharmacological inhibitor of gap junctions, would reduce the ventilatory response to CO(2) when focally perfused within the retrotrapezoid nucleus (RTN). We tested this hypothesis by measuring minute ventilation (V(E)), tidal volume (V(T)), and respiratory frequency (F(R)) responses to increasing concentrations of inspired CO(2) (Fi(CO(2)) = 0-8%) in rats during wakefulness. We confirmed that the RTN was chemosensitive by perfusing the RTN unilaterally with either acetazolamide (AZ; 10 microM) or hypercapnic artificial cerebrospinal fluid equilibrated with 50% CO(2) (pH approximately 6.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2004
We examined pH regulation in two chemosensitive areas of the brain, the retrotrapezoid nucleus (RTN) and the nucleus tractus solitarius (NTS), to identify the proton transporters involved in regulation of intracellular pH (pHi) in medullary glia. Transverse brain slices from young rats [postnatal day 8 (P8) to P20] were loaded with the pH-sensitive probe 2',7'-bis (2-carboxyethyl)-5,6-carboxyfluorescein after kainic acid treatment removed neurons. Cells were alkalinized when they were depolarized (extracellular K+ increased from 6.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
October 2002
Gap junctions are composed of connexins, which are organized into intercellular channels that form transmembrane pathways between neurons (cell-cell coupling), and in some cases, neurons and glia, for exchange of ions and small molecules (metabolic coupling) and ionic current (electrical coupling). Cell-cell coupling via gap junctions has been identified in brain stem neurons that function in CO(2)/H(+) chemoreception and respiratory rhythmogenesis; however, the exact roles of gap junctions in respiratory control are undetermined. Here we review the methods commonly used to study gap junctions in the mammalian brain stem under in vitro and in vivo conditions and briefly summarize the anatomical, pharmacological, and electrophysiological evidence to date supporting roles for cell-cell coupling in respiratory rhythmogenesis and central chemoreception.
View Article and Find Full Text PDF