Publications by authors named "Joseph Ritter"

Background: Our previous studies showed that renal medullary sphingosine-1-phosphate receptor 1 (S1PR1) mediated sodium excretion, high salt intake increased S1PR1 level, deoxycorticosterone acetate (DOCA) blocked high salt-induced S1PR1 in the renal medulla, and that conditional knockout of S1PR1 in the collecting duct aggravated DOCA-salt hypertension. The present study tested the hypothesis that overexpression of S1PR1 transgene in the renal medulla attenuates the sodium retention and hypertension in DOCA-salt mouse model.

Methods: Male C57BL/6J mice received renal medullary transfection of control or S1PR1-expressing plasmids and then DOCA-salt treatment.

View Article and Find Full Text PDF

Podocytopathy and associated nephrotic syndrome have been reported in a mouse strain (Asah1/Podo) with a podocyte-specific deletion of α subunit (the main catalytic subunit) of acid ceramidase (Ac). However, the pathogenesis of podocytopathy in these mice remains unclear. The present study tested whether Ac deficiency impairs autophagic flux in podocytes through blockade of transient receptor potential mucolipin 1 (TRPML1) channel as a potential pathogenic mechanism of podocytopathy in Asah1/Podo mice.

View Article and Find Full Text PDF

The rapid fall in blood pressure following unclipping of the stenotic renal artery in the Goldblatt two-kidney one-clip (2K1C) model of renovascular hypertension is proposed to be due to release of renomedullary vasodepressor lipids, but the mechanism has remained unclear. In this study, we hypothesized that the hypotensive response to unclipping is mediated by exosomes released from the renal medulla. In male C57BL6/J mice made hypertensive by the 2K1C surgery, unclipping of the renal artery after 10 days decreased mean arterial pressure (MAP) by 23 mmHg one hr after unclipping.

View Article and Find Full Text PDF

Although cannabinoid receptors (CB) are recognized as targets for renal fibrosis, the roles of endogenous cannabinoid anandamide (AEA) and its primary hydrolytic enzyme, fatty acid amide hydrolase (FAAH), in renal fibrogenesis remain unclear. The present study used a mouse model of post-ischemia-reperfusion renal injury (PIR) to test the hypothesis that FAAH participates in the renal fibrogenesis. Our results demonstrated that PIR showed upregulated expression of FAAH in renal proximal tubules, accompanied with decreased AEA levels in kidneys.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation in podocytes is reportedly associated with enhanced release of exosomes containing NLRP3 inflammasome products from these cells during hyperhomocysteinemia (hHcy). This study examined the possible role of increased exosome secretion during podocyte NLRP3 inflammasome activation in the glomerular inflammatory response. Whether exosome biogenesis and lysosome function are involved in the regulation of exosome release from podocytes during hHcy in mice and upon stimulation of homocysteine (Hcy) in podocytes was tested.

View Article and Find Full Text PDF

Inhibition of hypoxia-inducible factor-prolyl hydroxylase (PHD) has been shown to protect against various kidney diseases. However, there are controversial reports on the effect of PHD inhibition in renoprotection. The present study determined whether delivery of PHD2 small interfering RNA (siRNA) using an siRNA carrier, folic acid (FA)-decorated polyamidoamine dendrimer generation 5 (G5-FA), would mainly target kidneys and protect against renal ischemia/reperfusion injury (I/R).

View Article and Find Full Text PDF

The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome in podocytes has been implicated in the initiation of glomerular inflammation during hyperhomocysteinemia (hHcy). However, the mechanism by which NLRP3 inflammasome products are released from podocytes remains unknown. The present study tested whether exosome secretion from podocytes is enhanced by NADPH oxidase-produced reactive oxygen species (ROS), which may serve as a pathogenic mechanism mediating the release of inflammatory cytokines produced by the NLRP3 inflammasome in podocytes after Hcy stimulation.

View Article and Find Full Text PDF

The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been implicated in podocyte injury and glomerular sclerosis in response to hyperhomocysteinemia (hHcy). However, it remains unknown how the products of NLRP3 inflammasome in cytoplasm are secreted out of podocytes. In the present study, we tested whether exosome release serves as a critical mechanism to mediate the action of NLRP3 inflammasome activation in hHcy-induced glomerular injury.

View Article and Find Full Text PDF

Objective: We have previously reported that renal medullary sphingosine-1-phosphate (S1P) regulates sodium excretion via the S1P type-1 receptor (S1PR1). As S1PR1 is predominantly expressed in collecting ducts (CD), the present study tested the hypothesis that the CD-S1PR1 pathway plays a critical role in sodium excretion and contributes to salt-sensitive hypertension.

Methods: CD-specific S1PR1 knockout mice were generated by crossing aquaporin-2-Cre mice with S1PR1-floxed mice.

View Article and Find Full Text PDF

The endocannabinoid, anandamide (AEA), stimulates cannabinoid receptors (CBRs) and is enriched in the kidney, especially the renal medulla. AEA infused into the renal outer medulla of mice stimulates urine flow rate and salt excretion. Here we show that these effects are blocked by the CBR type 1 (CB1) inverse agonist, rimonabant.

View Article and Find Full Text PDF

This rather long-standing project has resulted in a National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) for the analysis of crystallite size from a consideration of powder diffraction line profile broadening. It consists of two zinc oxide powders, one with a crystallite size distribution centered at approximately 15 nm, and a second centered at about 60 nm. These materials display the effects of stacking faults that broaden specific reflections and a slight amount of microstrain broadening.

View Article and Find Full Text PDF

Background: Sphingosine-1-phosphate (S1P) is a bioactive metabolite of sphingolipids and produced by sphingosine kinases (SphK1 and SphK2). SphK1/S1P pathway is implicated in the progression of chronic kidney disease. However, the role of SphK1/S1P pathway in renal injury in hypertension has not been reported.

View Article and Find Full Text PDF

Lysosomal acid ceramidase (Ac) has been shown to be critical for ceramide hydrolysis and regulation of lysosome function and cellular homeostasis. In the present study, we generated a knockout mouse strain (Asah1/Podo) with a podocyte-specific deletion of the α subunit (main catalytic subunit) of Ac. Although no significant morphologic changes in glomeruli were observed in these mice under light microscope, severe proteinuria and albuminuria were found in these podocyte-specific knockout mice compared with control genotype littermates.

View Article and Find Full Text PDF

D-ribose levels are demonstrated to be increased in type II diabetes mellitus and increased blood D-ribose is involved in the development of diabetic complications such as diabetic encephalopathy and nephropathy. However, the mechanism mediating the pathogenic role of D-ribose in nephropathy remains poorly understood. Given that D-ribose was reported to induce advanced glycation end products (AGEs) formation, the present study tested whether D-ribose induces NLRP3 activation and associated glomerular injury via AGEs/receptor of AGEs (RAGE) signaling pathway.

View Article and Find Full Text PDF

The kidneys play an important role in the long-term regulation of blood pressure by control of salt and water balance in the body through various systems including the endocannabinoid system. The endocannabinoid system consists of the two major cannabinoid receptor agonists, anandamide (AEA) and 2-arachidonylglycerol (2-AG), their hydrolyzing enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and the cannabinoid receptors, CB and CB. AEA can be converted into 12- and 15(S)-hydroperoxyeicosatetraenoic acid ethanolamides by 12-LOX and 15-LOX, respectively and can form epoxyeicosatrienoic acid- (EET-EAs) (5,6-, 8,9-, 11,12-, 14,15-) and hydroxyeicosatetraenoic acid- (HETE) ethanolamides.

View Article and Find Full Text PDF

Background: Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in various diseases. S1P also plays significant roles in the differentiation of fibroblasts into myofibroblasts, being implicated in fibrotic diseases. S1P is produced by the phosphorylation of sphingosine catalyzed by sphingosine kinases (SphK1 and SphK2).

View Article and Find Full Text PDF

The NLRP3 inflammasome is activated in the cytoplasm of cells and its products such as IL-1β are exported through a non-classical ER-Golgi pathway. Several mechanistically distinct models including exocytosis of secretory lysosomes, microvesicles (MVs) and extracellular vehicles (EVs) have been proposed for their release. In this study, we hypothesized that the NLRP3 inflammasome product, IL-1β in response to exogenously administrated and endogenously produced d-ribose stimulation is released via extracellular vesicles including EVs via a sphingolipid-mediated molecular mechanisms controlling lysosome and multivesicular body (MVB) interaction.

View Article and Find Full Text PDF

The relationship between the endocannabinoid system in the renal medulla and the long-term regulation of blood pressure is not yet understood. To investigate the possible role of the endocannabinoid system in renomedullary interstitial cells, mouse medullary interstitial cells (MMICs) were obtained, cultured, and characterized for their responses to treatment with a selective inhibitor of fatty acid amide hydrolase, PF-3845 (-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide). Treatment of MMICs with PF-3845 increased cytoplasmic lipid granules detected by Sudan Black B staining and multilamellar bodies identified by transmission electron microscopy.

View Article and Find Full Text PDF

The gasotransmitters are a family of gaseous signaling molecules which are produced endogenously and act at specific receptors to play imperative roles in physiologic and pathophysiologic processes. As a well-known gasotransmitter along with hydrogen sulfide and carbon monoxide, nitric oxide (NO) has earned repute as a potent vasodilator also known as endothelium-derived vasorelaxant factor (EDRF). NO has been studied in greater detail, from its synthesis and mechanism of action to its physiologic, pathologic, and pharmacologic roles in different disease states.

View Article and Find Full Text PDF

The pannexin-1 (Panx1) channel has been reported to mediate the release of ATP that is involved in local tissue inflammation, obesity, and many chronic degenerative diseases. It remains unknown whether Panx1 is present in podocytes and whether this channel in podocytes mediates ATP release leading to glomerular inflammation or fibrosis. To answer these questions, we first characterized the expression of Panx channels in podocytes.

View Article and Find Full Text PDF

The kidneys contribute to the control of body fluid and electrolytes and the long-term regulation of blood pressure through various systems, including the endocannabinoid system. Previously, we showed that inhibition of the two major endocannabinoid-hydrolyzing enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, in the renal medulla increased the rate of urine excretion (UV) and salt excretion without affecting mean arterial pressure (MAP). The present study evaluated the effects of a selective FAAH inhibitor, N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidine carboxamide (PF-3845) on MAP and renal functions.

View Article and Find Full Text PDF

Renal fibrosis is defined as the excessive deposition and modification of extracellular matrix (ECM) in the renal parenchyma in response to injury and inflammation, resulting in renal function loss. This condition is common to many chronic kidney diseases occurring under diverse pathological conditions, such as diabetic and hypertensive nephropathy. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in the regulation of cardiovascular functions and the pathogenesis of various cardiovascular diseases.

View Article and Find Full Text PDF

The renal medulla, considered critical for the regulation of salt and water balance and long-term blood pressure control, is enriched in anandamide and two of its major metabolizing enzymes, cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH). Infusion of anandamide (15, 30, and 60 nmol·min·kg) into the renal medulla of C57BL/6J mice stimulated diuresis and salt excretion in a COX-2- but not COX-1-dependent manner. To determine whether endogenous endocannabinoids in the renal medulla can elicit similar effects, the effects of intramedullary isopropyl dodecyl fluorophosphate (IDFP), which inhibits the two major endocannabinoid hydrolases, were studied.

View Article and Find Full Text PDF

The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been implicated in podocyte injury and glomerular sclerosis during hyperhomocysteinemia (hHcys). However, it remains unclear whether the NLRP3 inflammasome can be a therapeutic target for treatment of hHcys-induced kidney injury. Given that DHA metabolites-resolvins have potent anti-inflammatory effects, the present study tested whether the prototype, resolvin D1 (RvD1), and 17S-hydroxy DHA (17S-HDHA), an intermediate product, abrogate hHcys-induced podocyte injury by targeting the NLRP3 inflammasome.

View Article and Find Full Text PDF

Recent studies have demonstrated that l-homocysteine (Hcys)-induced podocyte injury leading to glomerular damage or sclerosis is attributable to the activation of the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome. Given the demonstrated anti-inflammatory effects of endocannabinoids, the present study was designed to test whether anandamide (AEA) or its metabolites diminish NLRP3 inflammasome activation and prevent podocyte injury and associated glomerular damage during hyperhomocysteinemia (hHcys). AEA (100 μM) inhibited Hcys-induced NLRP3 inflammasome activation in cultured podocytes, as indicated by elevated caspase-1 activity and interleukin-1β levels, and attenuated podocyte dysfunction, as shown by reduced vascular endothelial growth factor production.

View Article and Find Full Text PDF