Publications by authors named "Joseph R Walker"

Clopidogrel and prasugrel are antiplatelet therapies commonly used to treat patients with cardiovascular disease. They are both pro-drugs requiring biotransformation into active metabolites. It has been proposed that a genetic variant Q192R (rs662 A>G) in PON1 significantly alters the biotransformation of clopidogrel and affects clinical outcomes; however, this assertion has limited support.

View Article and Find Full Text PDF

Background: Warfarin is the most widely used oral anticoagulant worldwide, but serious bleeding complications are common. We tested whether genetic variants can identify patients who are at increased risk of bleeding with warfarin and, consequently, those who would derive a greater safety benefit with a direct oral anticoagulant rather than warfarin.

Methods: ENGAGE AF-TIMI 48 was a randomised, double-blind trial in which patients with atrial fibrillation were assigned to warfarin to achieve a target international normalised ratio of 2·0-3·0, or to higher-dose (60 mg) or lower-dose (30 mg) edoxaban once daily.

View Article and Find Full Text PDF

We compared results obtained with the Nanosphere Verigene® System, a novel point-of-care (POC) genetic test capable of analysing 11 CYP2C19 variants within 3 hours, to an established, validated genotyping method (Affymetrix™ DMET+; reference assay) for identifying extensive and reduced metabolisers of clopidogrel. Based on genotyping, patients (N=82) with stable coronary artery disease on clopidogrel 75 mg daily were defined as extensive metabolisers (*1/*1, *1/*17, *17/*17), reduced metabolisers (*1/*2, *1/*8, *2/*2, *2/*3), or of indeterminate metaboliser status (*2/*17). Pharmacokinetic exposure to clopidogrel's active metabolite and pharmacodynamic measures with P2Y12 reaction units (PRU) (VerifyNow®P2Y12 assay) and VASP PRI (PRI) were also assessed.

View Article and Find Full Text PDF
Article Synopsis
  • Clopidogrel effectiveness can be influenced by genetic variations, particularly the CYP2C19*2 allele, which is known to impair its response; findings regarding other genetic factors like CYP2C19*17, ABCB1, and PON1 remain inconsistent.
  • A study involving 194 aspirin-treated patients with coronary artery disease analyzed how genetic polymorphisms affected the pharmacodynamics and pharmacokinetics of clopidogrel and prasugrel, showing that only CYP2C19 variants impacted clopidogrel metrics.
  • Results indicated prasugrel consistently provided stronger platelet inhibition and more active metabolites than clopidogrel, regardless of the genetic variations present, supporting its superior efficacy in treating patients undergoing coronary interventions.
View Article and Find Full Text PDF

Aims: This open-label, two-period, randomized, crossover study was designed to determine the effect of CYP2C19 reduced function variants on exposure to active metabolites of, and platelet response to, prasugrel and clopidogrel.

Methods: Ninety healthy Chinese subjects, stratified by CYP2C19 phenotype, were randomly assigned to treatment with prasugrel 10 mg or clopidogrel 75 mg for 10 days followed by 14 day washout and 10 day treatment with the other drug. Eighty-three subjects completed both treatment periods.

View Article and Find Full Text PDF

The purpose of this analysis was to develop a population pharmacokinetic model for CS-917, an oral hypoglycemic prodrug, and its 3 metabolites. The population pharmacokinetic model was used to predict exposure of the active moiety R-125338 and thus to identify potential CS-917 dosage reduction criteria. The dataset included 6 phase I and IIa studies in patients with type 2 diabetes mellitus.

View Article and Find Full Text PDF

Background: Clopidogrel and prasugrel are subject to efflux via P-glycoprotein (encoded by ABCB1, also known as MDR1). ABCB1 polymorphisms, particularly 3435C→T, may affect drug transport and efficacy. We aimed to assess the effect of this polymorphism by itself and alongside variants in CYP2C19 on cardiovascular outcomes in patients treated with clopidogrel or prasugrel in TRITON-TIMI 38.

View Article and Find Full Text PDF

The purpose of this study was to assess effects of colesevelam on the pharmacokinetics of glyburide, levothyroxine, estrogen estradiol (EE), norethindrone (NET), pioglitazone, and repaglinide in healthy volunteers. Six drugs with a potential to interact with colesevelam were studied in open-label, randomized clinical studies. The presence of a drug interaction was concluded if the 90% confidence intervals for the geometric least squares mean ratios of AUC(0-t) (AUC(0-48) for levothyroxine) and C(max) fell outside the no-effect limits of (80.

View Article and Find Full Text PDF

Quantitative structure-property relationship (QSPR) models were developed to correlate physicochemical properties of structurally unrelated drugs with extent of in vitro binding to colesevelam, and predicted values were compared with drug exposure changes in vivo following coadministration. The binding of 17 drugs to colesevelam was determined by an in vitro dissolution drug-binding assay. Data from several clinical studies in healthy volunteers to support administration of colesevelam in diabetic patients were also collected along with existing in vivo literature data and compared with in vitro results.

View Article and Find Full Text PDF

Background: Both clopidogrel and prasugrel require biotransformation to active metabolites by cytochrome P450 (CYP) enzymes. Among persons treated with clopidogrel, carriers of reduced-function CYP2C19 alleles have significantly lower levels of active metabolite, diminished platelet inhibition, and higher rates of adverse cardiovascular events. The effect of CYP polymorphisms on the clinical outcomes in patients treated with prasugrel remains unknown.

View Article and Find Full Text PDF

Background: Clopidogrel requires transformation into an active metabolite by cytochrome P-450 (CYP) enzymes for its antiplatelet effect. The genes encoding CYP enzymes are polymorphic, with common alleles conferring reduced function.

Methods: We tested the association between functional genetic variants in CYP genes, plasma concentrations of active drug metabolite, and platelet inhibition in response to clopidogrel in 162 healthy subjects.

View Article and Find Full Text PDF

The exposure-response properties of metformin were characterized in 12 subjects with type 2 diabetes mellitus. The time course of drug concentration and effects on fasting plasma glucose and lactic acid concentrations were used from a study in which subjects received 500 mg of metformin twice daily for 5 days followed by 850 mg twice daily for 5 days. Pharmacokinetic sampling included morning trough concentrations obtained on days 7 to 9 and rich sampling (15 time points) on day 10.

View Article and Find Full Text PDF

Objective: beta-Blockers require careful initiation and titration when used in patients with heart failure. Some patients tolerate beta-blocker therapy initiation without difficulty, whereas in other patients this period presents clinical challenges. We tested the hypothesis that polymorphisms at codons 389 (Arg389Gly) and 49 (Ser49Gly) of the beta(1)-adrenergic receptor would be associated with differences in initial tolerability of beta-blocker therapy in patients with heart failure.

View Article and Find Full Text PDF

Objective: Beta-Blocker use can be associated with adverse effects that may have an impact on adherence or harm patients. The commonly prescribed beta-blocker metoprolol is metabolized by the polymorphic cytochrome P450 (CYP) 2D6 enzyme, resulting in widely variable drug exposure. We investigated whether metoprolol plasma concentrations, CYP2D6 polymorphisms, or genotype-derived phenotype was associated with adverse effects or efficacy in patients with hypertension.

View Article and Find Full Text PDF