Heavy metal contamination is a growing concern in the developing world. Inadequate water and wastewater treatment, coupled with increased industrial activity, have led to increased heavy metal contamination in rivers, lakes, and other water sources in developing countries. However, common methods for removing heavy metals from water sources, including membrane filtration, activated carbon adsorption, and electrocoagulation, are not feasible for developing countries.
View Article and Find Full Text PDFHydrothermal carbonization (HTC) is a wet, low temperature thermal conversion process that continues to gain attention for the generation of hydrochar. The importance of specific process conditions and feedstock properties on hydrochar characteristics is not well understood. To evaluate this, linear and non-linear models were developed to describe hydrochar characteristics based on data collected from HTC-related literature.
View Article and Find Full Text PDFFunctionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramic) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramic membrane (14.
View Article and Find Full Text PDFFood waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2016
A probabilistic approach is proposed to estimate water permeability in a cellulose triacetate (CTA) membrane. Water transport across the membrane is simulated in reverse osmosis mode by means of non-equilibrium molecular dynamics (MD) simulations. Different membrane configurations obtained by an annealing MD simulation are considered and simulation results are analyzed by using a hierarchical Bayesian model to obtain the permeability of the different membranes.
View Article and Find Full Text PDFSonocatalytic degradation experiments were carried out to determine the effects of glass beads (GBs) and single-walled carbon nanotubes (SWNTs) on ibuprofen (IBP) and sulfamethoxazole (SMX) removal using low and high ultrasonic frequencies (28 and 1000kHz). In the absence of catalysts, the sonochemical degradation at pH 7, optimum power of 0.18WmL(-1), and a temperature of 15°C was higher (79% and 72%) at 1000kHz than at 28kHz (45% and 33%) for IBP and SMX, respectively.
View Article and Find Full Text PDFThe aggregation kinetics of nC60 and higher-order fullerene (HOF) clusters, i.e., nC70, nC76, and nC84, was systematically studied under a wide range of mono- (NaCl) and divalent (CaCl2) electrolytes and using time-resolved dynamic light scattering.
View Article and Find Full Text PDFSingle-walled carbon nanotubes' (SWNT) effectiveness in applications is enhanced by debundling or stabilization. Anionic surfactants are known to effectively stabilize SWNTs. However, the role of specific chirality on surfactant-stabilized SWNT aggregation has not been studied to date.
View Article and Find Full Text PDFAlthough there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass.
View Article and Find Full Text PDFThe adsorptive properties of graphene oxide (GO) were characterized, and the binding energies of diclofenac (DCF) and sulfamethoxazole (SMX) on GO adsorption were predicted using molecular modeling. The adsorption behaviors of DCF and SMX were investigated in terms of GO dosage, contact time, and pH. Additionally, the effects of sonication on GO adsorption were examined.
View Article and Find Full Text PDFThe purpose of this study is to develop regression models that describe the role of process conditions and feedstock chemical properties on carbonization product characteristics. Experimental data were collected and compiled from literature-reported carbonization studies and subsequently analyzed using two statistical approaches: multiple linear regression and regression trees. Results from these analyses indicate that both the multiple linear regression and regression tree models fit the product characteristics data well.
View Article and Find Full Text PDFBioresour Technol
February 2014
Hydrothermal carbonization (HTC) is a thermal conversion process that has been shown to be environmentally and energetically advantageous for the conversion of wet feedstocks. Supplemental moisture, usually in the form of pure water, is added during carbonization to achieve feedstock submersion. To improve process sustainability, it is important to consider alternative supplemental moisture sources.
View Article and Find Full Text PDFSize-tunable stable aqueous fullerenes were prepared with different concentrations of biocompatible block-copolymer pluronic (PA) F-127, ranging from 0.001% to 1% (w/v). Size uniformity increased with the increase in PA concentration, yielding optimum 58.
View Article and Find Full Text PDFHydrothermal carbonization of simulated food waste was performed at 250 °C for 20 h using deionized water (DI) and 0.01 N solutions of HCl, NaCl, and NaOH. The hydrochars produced were washed with acetone and the adsorptive capacity of the washed and unwashed hydrochars for atrazine were characterized.
View Article and Find Full Text PDFAggregate structure of covalently functionalized chiral specific semiconducting single-walled carbon nanotubes (SWNTs) was systematically studied employing static light scattering (SLS). Fractal dimensions (Df) of two specific chirality SWNTs-SG65 and SG76 with (6, 5) and (7, 6) chiral enrichments-were measured under four biological exposure media conditions, namely: Dulbecco's Modified Eagle Medium (DMEM), Minimum Essential Medium (MEM), Roswell Park Memorial Institute (RPMI) 1640 medium, and 0.9% saline solution.
View Article and Find Full Text PDFHydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization.
View Article and Find Full Text PDFUltrasonic (US) and single-walled carbon nanotube (SWNT)-catalyzed ultrasonic (US/SWNT) degradation of a pharmaceutical (PhAC) mixture of acetaminophen (AAP) and naproxen (NPX) used as analgesics was carried out in water. In the absence of SWNTs, maximum degradations of AAP and NPX occurred at a high frequency (1000 kHz) and under acidic conditions (pH 3) and different solution temperatures (25 °C at 28 kHz and 35 °C at 1000 kHz) during US reactions. Rapid degradation of PhACs occurred within 10 min at 28 kHz (44.
View Article and Find Full Text PDFStudies have demonstrated that hydrothermal carbonization of biomass and waste streams results in the formation of beneficial materials/resources with minimal greenhouse gas production. Data necessary to understand how critical process conditions influence carbonization mechanisms, product formation, and associated environmental implications are currently lacking. The purpose of this work is to hydrothermally carbonize cellulose at different temperatures and to systematically sample over a 96-h period to determine how changes in reaction temperature influence product evolution.
View Article and Find Full Text PDFAggregation kinetics of chiral-specific semiconducting single-walled carbon nanotubes (SWNTs) was systematically studied through time-resolved dynamic light scattering. Varied monovalent (NaCl) and divalent (CaCl(2)) electrolyte composition was used as background solution chemistry. Suwannee River humic acid (SRHA) was used to study the effects of natural organic matter on chirally separated SWNT aggregation.
View Article and Find Full Text PDFA systematic calorimetry-based technique was developed to standardize single-walled carbon nanotube (SWNT) dispersion protocol. Simple calorimetric experiments were performed to benchmark the performance of the ultra-dismembrator. Temperature profiles for the sonication period were utilized to estimate energy input to the system.
View Article and Find Full Text PDFNanotechnology
February 2012
Stable aqueous suspensions of nC₆₀ and individual higher fullerenes, i.e. C₇₀, C₇₆ and C₈₄, are prepared by a calorimetric modification of a commonly used liquid-liquid extraction technique.
View Article and Find Full Text PDFHydrothermal carbonization (HTC) is a novel thermal conversion process that can be used to convert municipal waste streams into sterilized, value-added hydrochar. HTC has been mostly applied and studied on a limited number of feedstocks, ranging from pure substances to slightly more complex biomass such as wood, with an emphasis on nanostructure generation. There has been little work exploring the carbonization of complex waste streams or of utilizing HTC as a sustainable waste management technique.
View Article and Find Full Text PDFMacrocapsules, composed of a pH-sensitive polymer and phosphate buffer, offer a novel remediation alternative for acidic ground waters. To test their potential effectiveness, laboratory experiments were carried out followed by a field trial within a coal pile runoff (CPR) acidic contaminant plume. Results of traditional limestone and macrocapsule treatments were compared in both laboratory and field experiments.
View Article and Find Full Text PDFA series of experiments was performed to prepare acidic macroencapsulated buffers composed of 20% Ca(H2PO4)(2) and 80% Eudragit S 100 polymer and alkaline macrocapsules composed of 65% K2HPO4 and 35% Eudragit E PO polymer (the powdered form of Eudragit E 100). Eudragit S 100 was shown to be soluble at a pH greater than 7.0, while Eudragit E 100 was soluble at a pH less than 7.
View Article and Find Full Text PDF