Current sensor devices for the detection of methane or natural gas emission are either expensive and have high power requirements or fail to provide a rapid response. This report describes an electrochemical methane sensor utilizing a non-volatile and conductive pyrrolidinium-based ionic liquid (IL) electrolyte and an innovative internal standard method for methane and oxygen dual-gas detection with high sensitivity, selectivity, and stability. At a platinum electrode in bis(trifluoromethylsulfonyl)imide (NTf2)-based ILs, methane is electro-oxidized to produce CO2 and water when an oxygen reduction process is included.
View Article and Find Full Text PDFAn integrated array of micron-dimension capacitors, originally developed for biometric applications (fingerprint identification), was engineered for detection of biological agents such as proteins and bacteria. This device consists of an array of 93,184 (256 x 364) individual capacitor-based sensing elements located underneath a thin (0.8 microm) layer of glass.
View Article and Find Full Text PDF