Object: Cerebrovascular dysfunction after subarachnoid hemorrhage (SAH) may contribute to ischemia, but little is known about the contribution of intracerebral arterioles. In this study, the authors tested the hypothesis that SAH inhibits the vascular reactivity of intracerebral arterioles and documented the time course of this dysfunction.
Methods: Subarachnoid hemorrhage was induced using an endovascular filament model in halothane-anesthetized male Sprague-Dawley rats.
Object: This study was undertaken to test the hypothesis that cerebral blood flow (CBF) and the intrinsic optical signal could be dissociated by altering adenosine receptor activity and to uncover the origin of the optic signal using a cranial window in the anesthetized rat.
Methods: In anesthetized, ventilated, and temperature-controlled rats with closed cranial windows, the authors evaluated simultaneously the alterations in pial arteriolar diameter, intrinsic optical signals (690 nm), and somatosensory evoked potentials during cortical activation evoked by contralateral sciatic nerve stimulation (SNS). To dissociate the vascular and intrinsic signal, they topically applied the adenosine receptors antagonists theophylline (5 microM), which affects A1 and A2A receptors, and 8-cyclopentyl-1,3-dipropylxanthine (CPX, 1 microM), which blocks the A(1) receptor.
The present study describes modifications to the endovascular filament model of subarachnoid hemorrhage (SAH) in rats. Specifically, we sought to improve the percentage yield of SAH, reduce mortality rates and better simulate human cerebral aneurysmal rupture. Instead of using a 4-0 prolene suture to induce SAH in the existing endovascular filament model, a hollow and flexible polyetrafluoroethylene (PTFE) tube was maneuvered into the proximal anterior cerebral artery (ACA) to ensure that advancement occurred without producing trauma to the vessels.
View Article and Find Full Text PDFBackground And Purpose: Disturbances in cerebral arteriolar function, in addition to large vessel vasospasm, may be responsible for ischemia after subarachnoid hemorrhage. The purpose of this study was to test the hypothesis that subarachnoid hemorrhage alters cerebral microvascular reactivity.
Methods: An endovascular filament model was used to induce subarachnoid hemorrhage in halothane-anesthetized male Sprague-Dawley rats.
Background And Purpose: Conducted vasomotor responses likely play an important role in cerebrovascular regulation, but it is unclear how these responses may be affected by ischemia. The purpose of this study was to evaluate the hypothesis that cerebral ischemia and reperfusion (I/R) alters vascular conduction in cerebral arterioles.
Methods: Middle cerebral artery occlusion (MCAO) was induced by an intraluminal filament technique in 4 groups of rats: (A) 2-hour MCAO/24-hour reperfusion (n=14); (B) 2-hour MCAO/1-hour reperfusion (n=7); (C) 1-hour MCAO/24-hour reperfusion (n=6); and (D) 1-hour MCAO/1-hour reperfusion (n=5).
J Cereb Blood Flow Metab
June 2005
Despite caffeine's wide consumption and well-documented psychoactive effects, little is known regarding the effects of caffeine on neurovascular coupling. In the present study, we evaluated the effects of caffeine, an adenosine receptor antagonist, on intracerebral arterioles in vitro and subsequently, on the pial circulation in vivo during cortical activation induced by contralateral sciatic nerve stimulation (SNS). In our in vitro studies, we utilized isolated intracerebral arterioles to determine the effects of caffeine (10 or 50 micromol/L) on adenosine-induced vasodilatation.
View Article and Find Full Text PDFWe investigated the effects of PD 81,723, an allosteric enhancer for the adenosine A(1) receptor subtype, on hippocampal injury and Morris water maze (MWM) performance following hyperglycemic cerebral ischemia and reperfusion (4-VO, 10 min) in the rat. PD 81,723 (3 or 10 mg/kg) or the equivalent volume of saline was administered intraperitoneally 30 min prior to ischemia. Moderate hyperglycemia was achieved by administration of D-glucose (3g/kg, i.
View Article and Find Full Text PDFObject: Excitatory amino acid (EAA) uptake by neurons and glia acts synergistically with stereoselective transport across the blood-brain barrier (BBB) to maintain EAA homeostasis in the brain. The endogenous neuroprotectant adenosine counteracts many aspects of excitotoxicity by increasing cerebral blood flow and by producing pre- and postsynaptic actions on neurons. In the present study, the authors explored the effect of adenosine on EAA transport across the BBB.
View Article and Find Full Text PDFAdenosine (ADO) is a potent cerebral vasodilator and has been proposed as a metabolic regulator of cerebral blood flow. However, the signal transduction pathway by which ADO causes vasodilation in cerebral microvessels is currently unknown. The current study was designed to investigate the role of cyclic nucleotides and cyclic nucleotide-dependent protein kinases in ADO-induced dilation of resistance-sized rat cerebral arterioles that develop spontaneous tone.
View Article and Find Full Text PDFVascular control mechanisms have been studied extensively in mice. However, an in vitro characterization of penetrating intracerebral arterioles has not been reported. We describe methods for isolation and cannulation for mouse intracerebral arterioles.
View Article and Find Full Text PDFBackground And Purpose: Functional MR imaging with blood oxygen level-dependent (BOLD) contrast enhancement is believed to rely on changes in cerebral blood flow and deoxyhemoglobin level to estimate the location and degree of neural activation. We studied the relationship between neural activation and the observed BOLD response by using theophylline, an antagonist of the inhibitory neurotransmitter adenosine and a potent inhibitor of the vasodilatory response to neural activation.
Methods: Using a rat model with electrical forepaw stimulation, we performed fMRI measurements before and after the systemic injection of either theophylline (0.
Object: The effects of the adenosine receptor antagonists theophylline (for A1 and A2) and ZM 241385 (for A2A) on hippocampal injury and Morris water maze (MWM) performance in rats were investigated following normoglycemic and hyperglycemic cerebral ischemia (induced by four vessel occlusion for 10 minutes).
Methods: Theophylline (36 mg/kg), ZM 241385 (1 mg/kg), or an equivalent volume of saline was administered to rats intraperitoneally 30 minutes before ischemia was induced. Moderate hyperglycemia was achieved by intraperitoneal administration of D-glucose (3 g/kg, 15 minutes before induction of ischemia).