Background: We implement a high-resolution visualization of the medical knowledge domain using the self-organizing map (SOM) method, based on a corpus of over two million publications. While self-organizing maps have been used for document visualization for some time, (1) little is known about how to deal with truly large document collections in conjunction with a large number of SOM neurons, (2) post-training geometric and semiotic transformations of the SOM tend to be limited, and (3) no user studies have been conducted with domain experts to validate the utility and readability of the resulting visualizations. Our study makes key contributions to all of these issues.
View Article and Find Full Text PDFGlobal maps of science can be used as a reference system to chart career trajectories, the location of emerging research frontiers, or the expertise profiles of institutes or nations. This paper details data preparation, analysis, and layout performed when designing and subsequently updating the UCSD map of science and classification system. The original classification and map use 7.
View Article and Find Full Text PDFBackground: We investigate the accuracy of different similarity approaches for clustering over two million biomedical documents. Clustering large sets of text documents is important for a variety of information needs and applications such as collection management and navigation, summary and analysis. The few comparisons of clustering results from different similarity approaches have focused on small literature sets and have given conflicting results.
View Article and Find Full Text PDF