Savie is a biodegradable surfactant derived from vitamin E and polysarcosine (PSar) developed for use in organic synthesis in recyclable water. This includes homogeneous catalysis (including examples employing only ppm levels of catalyst), heterogeneous catalysis, and biocatalytic transformations, including a multistep chemoenzymatic sequence. Use of Savie frequently leads to significantly higher yields than do conventional surfactants, while obviating the need for waste-generating organic solvents.
View Article and Find Full Text PDFACS Sustain Chem Eng
December 2022
An 11-step, 8-pot synthesis of the antimalarial drug tafenoquine succinate was achieved in 42% overall yield using commercially available starting materials. Compared to the previous manufacturing processes that utilize environmentally egregious organic solvents and toxic reagents, the current route features a far greener (as measured by Sheldon's E Factors) and likely more economically attractive sequence, potentially expanding the availability of this important drug worldwide.
View Article and Find Full Text PDFA newly devised route to the Pfizer drug nirmatrelvir is reported that reduces the overall sequence to a 1-pot process and relies on a commercially available, green coupling reagent, T3P. The overall yield of the targeted material, isolated as its MTBE solvate, is 64%.
View Article and Find Full Text PDFPfizer's drug for the treatment of patients infected with COVID-19, Paxlovid, contains most notably nirmatrelvir, along with ritonavir. Worldwide demand is projected to be in the hundreds of metric tons per year, to be produced by several generic drug manufacturers. Here we show a 7-step, 3-pot synthesis of the antiviral nirmatrelvir, arriving at the targeted drug in 70% overall yield.
View Article and Find Full Text PDFTwo routes to the antimalarial drug Pyronaridine are described. The first is a linear sequence that includes a two-step, one-pot transformation in an aqueous surfactant medium, leading to an overall yield of 87%. Alternatively, a convergent route utilizes a telescoped three-step sequence involving an initial neat reaction, followed by two steps performed under aqueous micellar catalysis conditions affording Pyronaridine in 95% overall yield.
View Article and Find Full Text PDFA review presenting water as the logical reaction medium for the future of organic chemistry. A discussion is offered that covers both the "on water" and "in water" phenomena, and how water is playing unique roles in each, specifically with regard to its use in organic synthesis.
View Article and Find Full Text PDFMild mono- and di-hydrodehalogenative reductions of gem-dibromocyclopropanes are described, providing an easy and green approach towards the synthesis of cyclopropanes. The methodology utilizes 0.5-5 mol % TMPhen-nickel as the catalyst, which, when activated with a hydride source such as sodium borohydride, cleanly and selectively dehalogenates dibromocyclopropanes.
View Article and Find Full Text PDF