The rapid determination of key physical properties of lead compounds is essential to the drug discovery process. Solubility is one of the most important properties since good solubility is needed not only for obtaining reliable in vitro and in vivo assay results in early discovery but also to ensure sufficient concentration of the drug being in circulation to get the desired therapeutic exposure at the target of interest. In order for medicinal chemists to tune solubility of lead compounds, a rapid assay is needed to provide solubility data that is accurate and predictive so that it can be reliably used for designing the next generation of compounds with improved properties.
View Article and Find Full Text PDFIn this paper, we introduce a high throughput LCMS/UV/CAD/CLND system that improves upon previously reported systems by increasing both the quantitation accuracy and the range of compounds amenable to testing, in particular, low molecular weight "fragment" compounds. This system consists of a charged aerosol detector (CAD) and chemiluminescent nitrogen detector (CLND) added to a LCMS/UV system. Our results show that the addition of CAD and CLND to LCMS/UV is more reliable for concentration determination for a wider range of compounds than either detector alone.
View Article and Find Full Text PDFComb Chem High Throughput Screen
December 2013
Modern small molecule drug design requires the optimization of not only the binding characteristics of the molecule but also its physicochemical properties for ADMET performance. A key physical property is lipophilicity and medicinal chemists need rapid access to high quality data in order to drive their decision making. Traditionally lipophilicity (log D) measurements are performed with a shake flask method and UV determination.
View Article and Find Full Text PDFA rapid screening method to identify the best conditions for chiral separations is described. We analyzed a representative set of 80 racemic compounds against 25 different chiral stationary phases with three different mobile phases to identify the combination of columns and mobile phases that will separate the most compounds on the initial screen. While the OD separated the largest number of compounds, we found the best combination of six columns to be the AD, AS, AY, CC4, ID and Whelk-O1.
View Article and Find Full Text PDFAcetaminophen-induced liver toxicity is the most frequent precipitating cause of acute liver failure and liver transplant, but contemporary medical practice has mainly focused on patient management after a liver injury has been induced. An integrative genetic, transcriptional, and two-dimensional NMR-based metabolomic analysis performed using multiple inbred mouse strains, along with knowledge-based filtering of these data, identified betaine-homocysteine methyltransferase 2 (Bhmt2) as a diet-dependent genetic factor that affected susceptibility to acetaminophen-induced liver toxicity in mice. Through an effect on methionine and glutathione biosynthesis, Bhmt2 could utilize its substrate (S-methylmethionine [SMM]) to confer protection against acetaminophen-induced injury in vivo.
View Article and Find Full Text PDFBioinformatics
November 2007
Motivation: Comparative metabolic profiling by nuclear magnetic resonance (NMR) is showing increasing promise for identifying inter-individual differences to drug response. Two dimensional (2D) (1)H (13)C NMR can reduce spectral overlap, a common problem of 1D (1)H NMR. However, the peak alignment tools for 1D NMR spectra are not well suited for 2D NMR.
View Article and Find Full Text PDFThe degradation of Ro-26-9228, 1alpha-fluoro-25-hydroxy-16,23E-diene-26,27-bishomo-20-epi-cholecalciferol, 2, was studied in aqueous solution in the pH range of 1.17-10.56 and in alcohol solutions, at 25, 40, and 50 degrees C.
View Article and Find Full Text PDF