Publications by authors named "Joseph P Kennedy"

Under optimized synthesis conditions, for the first time, polyisobutylene-based polyurethane (PIB-PU) is prepared with 70% PIB soft segment (i.e., a bioinert and calcification-resistant PU) with M > 100 000 Da, 32 MPa ultimate strength, and 630% elongation.

View Article and Find Full Text PDF

This series of publications describes research rendering soft polyisobutylene (PIB)-based thermoplastic elastomers 3D printable by blending with rigid chemically compatible thermoplastics. The molecular structure, morphology, physical properties, and 3D printability of such blends have been systematically investigated. The authors' first report was concerned with the rendering of soft poly(styrene-b-isobutylene-b-styrene) (SIBS) 3D printable by blending with rigid polystyrene (PS).

View Article and Find Full Text PDF

Amphiphilic polymer co-networks provide a unique route to integrating contrasting attributes of otherwise immiscible components within a bicontinuous percolating morphology and are anticipated to be valuable for applications such as biocatalysis, sensing of metabolites, and dual dialysis membranes. These co-networks are in essence chemically forced blends and have been shown to selectively phase-separate at surfaces during film formation. Here, we demonstrate that surface demixing at the air-film interface in solidifying polymer co-networks is not a unidirectional process; instead, a combination of kinetic and thermodynamic interactions leads to dynamic molecular rearrangement during solidification.

View Article and Find Full Text PDF

Research continued toward a bioartificial pancreas (BAP). Our BAPs consist of a perforated nitinol scaffold coated with reinforced amphiphilic conetwork membranes and contain live pancreatic islets. The membranes are assemblages of cocontinuous hydrophobic domains and hydrophilic channels whose diameters were varied by the MW of hydrophilic segments between crosslinks (M(c,HI) = 32, 44, and 74 kg x mol(-1)).

View Article and Find Full Text PDF

We have developed a replaceable bioartificial pancreas to treat diabetes utilizing a unique cocontinous amphiphilic conetwork membrane created for macroencapsulation and immunoisolation of porcine islet cells (PICs). The membrane is assembled from hydrophilic poly(N,N-dimethyl acrylamide) and hydrophobic/oxyphilic polydimethylsiloxane chains cross-linked with hydrophobic/oxyphilic polymethylhydrosiloxane chains. Our hypothesis is that this membrane allows the survival of xenotransplanted PICs in the absence of prevascularization or immunosuppression because of its extraordinarily high-oxygen permeability and small hydrophilic channel dimensions (3-4 nm).

View Article and Find Full Text PDF

This paper describes the design and preparation of the non-biological components (the "hardware") of a conceptually novel bioartificial pancreas (BAP) to correct diabetes. The key components of the hardware are (1) a thin (5-10 microm) semipermeable amphiphilic co-network (APCN) membrane [i.e.

View Article and Find Full Text PDF

Complex copolymers are heated to slowly increasing temperatures on a direct probe (DP) inside the plasma of the atmospheric pressure chemical ionization (APCI) source of a quadrupole ion trap. Slow heating allows for temporal separation of the thermal degradation products according to the stabilities of the bonds being cleaved. The products released from the DP are identified in situ by APCI mass spectrometry and tandem mass spectrometry.

View Article and Find Full Text PDF

We determined the biostability and biocompatibility of two types of amphiphilic conetworks (APCNs): (1) hydrophilic poly(N,N-dimethyl acrylamide) (PDMAAm) and hydrophobic polydimethylsiloxane (PDMS) microdomains co-crosslinked with polymethylhydrosiloxane (PMHS) clusters (PDMAAm/PMHS/PDMS), and (2) poly(ethylene glycol) (PEG) and PDMS microdomains co-crosslinked with two specially designed small-molecule crosslinking agents SiC(6)H(5)(SiH)(2)OEt (Y) and polypentamethylhydrocyclosiloxane (PD(5)) (PEG/Y or PD(5)/PDMS). Negative standards for comparing biocompatibility and biostability were crosslinked PDMS. Biostability was assessed by quantitatively determining extractables, equilibrium water swelling, mechanical properties (stress-strain response) of polymer samples before and after implantation in rats for up to 8 weeks, and oxidative accelerated degradation test.

View Article and Find Full Text PDF

Poly(Styrene-block-IsoButylene-block-Styrene) ("SIBS") is a biostable thermoplastic elastomer with physical properties that overlap silicone rubber and polyurethane. Initial data collected with SIBS stent-grafts and coatings on metallic stents demonstrate hemocompatibility, biocompatibility and long-term stability in contact with metal. SIBS has been used successfully as the carrier for a drug-eluting coronary stent; specifically Boston Scientific's TAXUS stent, and its uses are being investigated for ophthalmic implants to treat glaucoma, synthetic heart valves to possibly replace tissue valves and other applications.

View Article and Find Full Text PDF