Background: With the advent of electronic nicotine delivery systems, the use of nicotine and tobacco products (NTPs) among adolescents and young adults remains high in the US. Use of e-cigarettes additionally elevates the risk of problematic use of other substances like cannabis, which is often co-used with NTPs. However, their effects on brain health, particularly the hippocampus, and cognition during this neurodevelopmental period are poorly understood.
View Article and Find Full Text PDFStudies of COMT ValMet suggest that the neural circuitry subserving inhibitory control may be modulated by this functional polymorphism altering cortical dopamine availability, thus giving rise to heritable differences in behaviors. Using an anatomically-constrained magnetoencephalography method and stratifying the sample by COMT genotype, from a larger sample of 153 subjects, we examined the spatial and temporal dynamics of beta oscillations during motor execution and inhibition in 21 healthy Met/Met (high dopamine) or 21 Val/Val (low dopamine) genotype individuals during a Go/NoGo paradigm. While task performance was unaffected, Met homozygotes demonstrated an overall increase in beta power across regions essential for inhibitory control during early motor preparation (∼100 ms latency), suggestive of a global motor "pause" on behavior.
View Article and Find Full Text PDFEarly life substance use, including cannabis and nicotine, may result in deleterious effects on the maturation of brain tissue and gray matter cortical development. The current study employed linear regression models to investigate the main and interactive effects of past-year nicotine and cannabis use on gray matter cortical thickness estimates in 11 bilateral independent frontal cortical regions in 223 16-22-year-olds. As the frontal cortex develops throughout late adolescence and young adulthood, this period becomes crucial for studying the impact of substance use on brain structure.
View Article and Find Full Text PDFInhibitory control relies on attention, inhibition, and other functions that are integrated across neural networks in an interactive manner. Functional MRI studies have provided excellent spatial mapping of the involved regions. However, finer temporal resolution is needed to capture the underlying neural dynamics and the pattern of their functional contributions.
View Article and Find Full Text PDFBinge drinking is characterized by bouts of high-intensity alcohol intake and is associated with an array of health-related harms. Even though the transition from occasional impulsive to addictive alcohol use is not well understood, neurobiological models of addiction suggest that repeated cycles of intoxication and withdrawal contribute to the development of addiction in part through dysregulation of neurofunctional networks. Research on the neural sequelae associated with binge drinking is scant but resting state functional connectivity (RSFC) studies of alcohol use disorders (AUD) indicate that the development and maintenance of long-term excessive drinking may be mediated by network-level disruptions.
View Article and Find Full Text PDFDecision making relies on dynamic interactions of distributed, primarily frontal brain regions. Extensive evidence from functional magnetic resonance imaging (fMRI) studies indicates that the anterior cingulate (ACC) and the lateral prefrontal cortices (latPFC) are essential nodes subserving cognitive control. However, because of its limited temporal resolution, fMRI cannot accurately reflect the timing and nature of their presumed interplay.
View Article and Find Full Text PDFHeavy episodic drinking is prevalent among young adults and is a public issue of increasing importance. Its initiation and maintenance are associated with deficits in the capacity to inhibit automatic processing in favor of non-habitual responses. This study used functional magnetic resonance imaging (fMRI) to examine behavioral and brain activity indices of cognitive control during the Stroop task as a function of binge drinking.
View Article and Find Full Text PDF