A recent suggestion that europium doped potassium chloride (KCl:Eu) has the potential to significantly advance the state-of-the-art in radiation therapy dosimetry has generated a renewed interest in a classic storage phosphor material. The purposes of this work are to investigate the role of oxygen in the photostimulation luminescence (PSL) process and to determine if both increased PSL yield and improved temporal stability could be realized in KCl:Eu by incorporating oxygen in the material fabrication process. Regardless of synthesis atmosphere, air or pure nitrogen, PSL amplitude shows a maximum at 1.
View Article and Find Full Text PDFRecent research has shown that KCl:Eu²⁺ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports the authors' attempts to fabricate 2D KCl:Eu²⁺ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. X-ray diffraction analysis showed that a 10 µm thick PVD sample was composed of highly crystalline KCl.
View Article and Find Full Text PDFPurpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KC1:Eu2+), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study.
Methods: Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study.
Purpose: The low effective atomic number, reusability, and other computed radiography-related advantages make europium doped potassium chloride (KCl : Eu2+) a promising dosimetry material. The purpose of this study is to model KCl : Eu2+ point dosimeters with a Monte Carlo (MC) method and, using this model, to investigate the dose responses of two-dimensional (2D) KCl : Eu2+ storage phosphor films (SPFs).
Methods: KCl : Eu2+ point dosimeters were irradiated using a 6 MV beam at four depths (5-20 cm) for each of five square field sizes (5 x 5-25 x 25 cm2).
This work, for the first time, reports the use of europium doped potassium chloride (KCl:Eu2+) storage phosphor for quantitative megavoltage radiation therapy dosimetry. In principle, KCl:Eu2+ functions using the same photostimulatated luminescence (PSL) mechanism as commercially available BaFBr0.85I0.
View Article and Find Full Text PDF