Hydroxylated fatty acids are important intermediates in lipid metabolism and signaling. Surprisingly, the metabolism of 4-hydroxy fatty acids remains largely unexplored. We found that both ACAD10 and ACAD11 unite two enzymatic activities to introduce these metabolites into mitochondrial and peroxisomal β-oxidation, respectively.
View Article and Find Full Text PDFPlasma proteomics is a precious tool in human disease research but requires extensive sample preparation in order to perform in-depth analysis and biomarker discovery using traditional data-dependent acquisition (DDA). Here, we highlight the efficacy of combining moderate plasma prefractionation and data-independent acquisition (DIA) to significantly improve proteome coverage and depth while remaining cost-efficient. Using human plasma collected from a 20-patient COVID-19 cohort, our method utilizes commonly available solutions for depletion, sample preparation, and fractionation, followed by 3 liquid chromatography-mass spectrometry/MS (LC-MS/MS) injections for a 360 min total DIA run time.
View Article and Find Full Text PDFDolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction.
View Article and Find Full Text PDFGlycogen storage disease type Ib (GSD1b) and G6PC3-deficiency are rare autosomal recessive diseases caused by inactivating mutations in SLC37A4 (coding for G6PT) and G6PC3, respectively. Both diseases are characterized by neutropenia and neutrophil dysfunction due to the intracellular accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases. We recently showed that the use of SGLT2 inhibitor therapy to reduce tubular reabsorption of its precursor, 1,5-anhydroglucitol (1,5-AG), a glucose analog present in blood, successfully restored the neutropenia and neutrophil function in G6PC3-deficient and GSD1b patients.
View Article and Find Full Text PDFEur J Paediatr Neurol
January 2024
Clinical use of tacrolimus (TAC), an essential immunosuppressant following transplantation, is complexified by its high pharmacokinetic (PK) variability. The gut microbiota gains growing interest but limited investigations have evaluated its contribution to TAC PKs. Here, we explore the associations between the gut microbiota composition and TAC PKs.
View Article and Find Full Text PDFInherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass.
View Article and Find Full Text PDFA 53-year-old woman with a history of acute myeloid leukaemia received a second allogeneic haematopoietic stem cell transplant and was prescribed, among other medications, acyclovir and letermovir (480-mg daily oral dose) for prophylaxis of, respectively, herpes simplex and cytomegalovirus infection. The patient was admitted in the intensive care unit for dyspnoea and oliguria. Laboratory investigations revealed acute kidney injury but also a severe and progressive lactic acidosis.
View Article and Find Full Text PDFA 60-year-old man was admitted in the intensive care unit (ICU) for a rapidly progressive respiratory failure due to SARS-CoV-2 infection. He developed numerous complications including acute kidney injury (AKI) requiring prolonged continuous renal replacement therapy (CRRT). Enteral feeding was initiated on day 8.
View Article and Find Full Text PDFTransaminases play key roles in central metabolism, transferring the amino group from a donor substrate to an acceptor. These enzymes can often act, with low efficiency, on compounds different from the preferred substrates. To understand what might have shaped the substrate specificity of this class of enzymes, we examined the reactivity of six human cytosolic transaminases towards amino acids whose main degradative pathways do not include any transamination.
View Article and Find Full Text PDFSARS-CoV-2 causes major disturbances in serum metabolite levels, associated with severity of the immune response. Despite the numerous advantages of urine for biomarker discovery, the potential association between urine metabolites and disease severity has not been investigated in coronavirus disease 2019 (COVID-19). In a proof-of-concept study, we performed quantitative urine metabolomics in patients hospitalized with COVID-19 and controls using LC-MS/MS.
View Article and Find Full Text PDFIntroduction: Severe metabolic acidosis with elevated anion and osmol gap is suggestive of toxic alcohol ingestion. The absence of detectable methanol or ethylene glycol in the serum could mean that metabolism is complete or that other hypotheses have to be considered. Ingestion of less common alcohol or alcoholic ketoacidosis should be investigated as illustrated by the present observation.
View Article and Find Full Text PDFPurines are essential molecules that are components of vital biomolecules, such as nucleic acids, coenzymes, signaling molecules, as well as energy transfer molecules. The de novo biosynthesis pathway starts from phosphoribosylpyrophosphate (PRPP) and eventually leads to the synthesis of inosine monophosphate (IMP) by means of 10 sequential steps catalyzed by six different enzymes, three of which are bi-or tri-functional in nature. IMP is then converted into guanosine monophosphate (GMP) or adenosine monophosphate (AMP), which are further phosphorylated into nucleoside di- or tri-phosphates, such as GDP, GTP, ADP and ATP.
View Article and Find Full Text PDFThe cytosolic enzyme ethylmalonyl-CoA decarboxylase (ECHDC1) decarboxylates ethyl- or methyl-malonyl-CoA, two side products of acetyl-CoA carboxylase. These CoA derivatives can be used to synthesize a subset of branched-chain fatty acids (FAs). We previously found that ECHDC1 limits the synthesis of these abnormal FAs in cell lines, but its effects in vivo are unknown.
View Article and Find Full Text PDFBACKGROUNDDeciphering the function of the many genes previously classified as uncharacterized open reading frame (ORF) would complete our understanding of a cell's function and its pathophysiology.METHODSWhole-exome sequencing, yeast 2-hybrid and transcriptome analyses, and molecular characterization were performed in this study to uncover the function of the C2orf69 gene.RESULTSWe identified loss-of-function mutations in the uncharacterized C2orf69 gene in 8 individuals with brain abnormalities involving hypomyelination and microcephaly, liver dysfunction, and recurrent autoinflammation.
View Article and Find Full Text PDFMost fatty acids (FAs) are straight chains and are synthesized by fatty acid synthase (FASN) using acetyl-CoA and malonyl-CoA units. Yet, FASN is known to be promiscuous as it may use methylmalonyl-CoA instead of malonyl-CoA and thereby introduce methyl-branches. We have recently found that the cytosolic enzyme ECHDC1 degrades ethylmalonyl-CoA and methylmalonyl-CoA, which presumably result from promiscuous reactions catalyzed by acetyl-CoA carboxylase on butyryl- and propionyl-CoA.
View Article and Find Full Text PDFObjective: SLC13A3 encodes the plasma membrane Na /dicarboxylate cotransporter 3, which imports inside the cell 4 to 6 carbon dicarboxylates as well as N-acetylaspartate (NAA). SLC13A3 is mainly expressed in kidney, in astrocytes, and in the choroid plexus. We describe two unrelated patients presenting with acute, reversible (and recurrent in one) neurological deterioration during a febrile illness.
View Article and Find Full Text PDFNeutropenia represents an important problem in patients with genetic deficiency in either the glucose-6-phosphate transporter of the endoplasmic reticulum (G6PT/SLC37A4) or G6PC3, an endoplasmic reticulum phosphatase homologous to glucose-6-phosphatase. While affected granulocytes show reduced glucose utilization, the underlying mechanism is unknown and causal therapies are lacking. Using a combination of enzymological, cell-culture, and in vivo approaches, we demonstrate that G6PT and G6PC3 collaborate to destroy 1,5-anhydroglucitol-6-phosphate (1,5AG6P), a close structural analog of glucose-6-phosphate and an inhibitor of low- hexokinases, which catalyze the first step in glycolysis in most tissues.
View Article and Find Full Text PDFAcyl-CoA dehydrogenase 9 (ACAD9) is a mitochondrial protein involved in oxidative phosphorylation complex I biogenesis. This protein also exhibits acyl-CoA dehydrogenase (ACAD) activity. ACAD9-mutated patients have been reported to suffer from primarily heart, muscle, liver, and nervous system disorders.
View Article and Find Full Text PDF