Most often, gait biomechanics is studied during straight-ahead walking. However, real-life walking imposes various lateral maneuvers people must navigate. Such maneuvers challenge people's lateral balance and can induce falls.
View Article and Find Full Text PDFPeople with balance impairments often struggle performing turns or lateral maneuvers, which can increase risk of falls and injuries. Here we asked how people's mediolateral balance is impacted when walking on non-straight winding paths. Twenty-four healthy adults (12F / 12M; 25.
View Article and Find Full Text PDFJ R Soc Interface
October 2024
A simple lateral dynamic walker, with swing leg dynamics and three adjustable input parameters, is used to study how motor regulation affects frontal plane stepping. Motivated by experimental observations and phenomenological models, we imposed task-level multiobjective regulation targeting the walker's optimal lateral foot placement at each step. The regulator prioritizes achieving step width and lateral body position goals to varying degrees by choosing a mixture parameter.
View Article and Find Full Text PDFBackground: Older adults have difficulty maintaining side-to-side balance while navigating daily environments. Losing balance in such circumstances can lead to falls. We need to better understand how older adults adapt lateral balance to navigate environment-imposed task constraints.
View Article and Find Full Text PDFBackground: Walking requires frequent maneuvers to navigate changing environments with shifting goals. Humans accomplish maneuvers and simultaneously maintain balance primarily by modulating their foot placement, but a direct trade-off between these two objectives has been proposed. As older adults may rely more on foot placement to maintain lateral balance, they may be less able to adequately adapt stepping to perform lateral maneuvers.
View Article and Find Full Text PDFPeople rarely walk in straight lines. Instead, we make frequent turns or other maneuvers. Spatiotemporal parameters fundamentally characterize gait.
View Article and Find Full Text PDFWalking humans often navigate complex, varying walking paths. To reduce falls, we must first determine how older adults purposefully vary their steps in contexts that challenge balance. Here, 20 young (21.
View Article and Find Full Text PDFPeople rarely walk in straight lines. Instead, we make frequent turns or other maneuvers. Spatiotemporal parameters fundamentally characterize gait.
View Article and Find Full Text PDFBackground: Walking requires frequent maneuvers to navigate changing environments with shifting goals. Humans accomplish maneuvers and simultaneously maintain balance primarily by modulating their foot placement, but a direct trade-off between these two objectives has been proposed. As older adults rely more on foot placement to maintain lateral balance, they may be less able to adequately adapt stepping to perform lateral maneuvers.
View Article and Find Full Text PDFTo successfully traverse their environment, humans often perform maneuvers to achieve desired task goals while simultaneously maintaining balance. Humans accomplish these tasks primarily by modulating their foot placements. As humans are more unstable laterally, we must better understand how humans modulate lateral foot placement.
View Article and Find Full Text PDFMetabolic cost minimization is thought to underscore the neural control of locomotion. Yet, avoiding high muscle activation, a cause of fatigue, often outperforms energy minimization in computational predictions of human gait. Discerning the relative importance of these criteria in human walking has proved elusive, in part, because they have not been empirically decoupled.
View Article and Find Full Text PDFDerived from inverted pendulum dynamics, mediolateral Margin of Stability (MoS) is a mechanically-grounded measure of instantaneous frontal-plane stability. However, average MoS measures yield paradoxical results. Gait pathologies or perturbations often induce larger (supposedly "more stable") average MoS, despite clearly destabilizing factors.
View Article and Find Full Text PDFWalking humans display great versatility when achieving task goals, like avoiding obstacles or walking alongside others, but the relevance of this to fall avoidance remains unknown. We recently demonstrated a functional connection between the motor regulation needed to achieve task goals (e.g.
View Article and Find Full Text PDFPeople walk in complex environments where they must adapt their steps to maintain balance and satisfy changing task goals. How people do this is not well understood. We recently developed computational models of lateral stepping, based on Goal Equivalent Manifolds that serve as motor regulation templates, to identify how people regulate walking movements from step-to-step.
View Article and Find Full Text PDFBackground: Persons with lower limb amputation often experience decreased physical capacity, difficulty walking, and increased fall risk. To either prevent or recover from a loss of balance, one must effectively regulate their stepping movements. It is therefore critical to identify how well persons with amputation regulate stepping.
View Article and Find Full Text PDFMuch remains unknown about how considerations such as stability and energy minimization shape the way humans walk. While active neuromotor control keeps humans upright, they also need to choose from multiple stepping regulation strategies to achieve one or more task goals, such as maintaining a desired speed or direction. Experiments on human treadmill walking motivate an important question: why do humans prefer one task-level regulation strategy over another-perhaps to enhance their ability to reject large disturbances? Here, we study the relationship between task-level regulation and global stability in a powered compass walker on a treadmill, with added step-to-step speed and position regulators.
View Article and Find Full Text PDFGait variability is generally associated with falls, but specific connections remain disputed. To reduce falls, we must first understand how older adults maintain lateral balance while walking, particularly when their stability is challenged. We recently developed computational models of lateral stepping, based on Goal Equivalent Manifolds, that separate effects of step-to-step regulation from variability.
View Article and Find Full Text PDFExperimental studies of human walking have shown that within an individual step, variations in the center of mass (CoM) state can predict corresponding variations in the next foot placement. This has been interpreted by some to indicate the existence of active control in which the nervous system uses the CoM state at or near mid-stance to regulate subsequent foot placement. However, the passive dynamics of the moving body and/or moving limbs also contribute (perhaps strongly) to foot placement, and thus to its variation.
View Article and Find Full Text PDFMinimization of metabolic energy is considered a fundamental principle of human locomotion, as demonstrated by an alignment between the preferred walking speed (PWS) and the speed incurring the lowest metabolic cost of transport. We aimed to (i) simultaneously disrupt metabolic cost and an alternate acute task requirement, namely speed error regulation, and (ii) assess whether the PWS could be explained on the basis of either optimality criterion in this new performance and energetic landscape. Healthy adults ( = 21) walked on an instrumented treadmill under normal conditions and, while negotiating a continuous gait perturbation, imposed leg-length asymmetry.
View Article and Find Full Text PDFA fundamental question in human motor neuroscience is to determine how the nervous system generates goal-directed movements despite inherent physiological noise and redundancy. Walking exhibits considerable variability and equifinality of task solutions. Existing models of bipedal walking do not yet achieve both continuous dynamic balance control and the equifinality of foot placement humans exhibit.
View Article and Find Full Text PDFAs humans walk or run, external (environmental) and internal (physiological) disturbances induce variability. How humans regulate this variability from stride-to-stride can be critical to maintaining balance. One cannot infer what is "controlled" based on analyses of variability alone.
View Article and Find Full Text PDFOlder adults exhibit increased gait variability that is associated with fall history and predicts future falls. It is not known to what extent this increased variability results from increased physiological noise versus a decreased ability to regulate walking movements. To "walk", a person must move a finite distance in finite time, making stride length (L) and time (T) the fundamental stride variables to define forward walking.
View Article and Find Full Text PDFWe study inter-trial movement fluctuations exhibited by human participants during the repeated execution of a virtual shuffleboard task. Focusing on skilled performance, theoretical analysis of a previously-developed general model of inter-trial error correction is used to predict the temporal and geometric structure of variability near a goal equivalent manifold (GEM). The theory also predicts that the goal-level error scales linearly with intrinsic body-level noise via the total body-goal sensitivity, a new derived quantity that illustrates how task performance arises from the interaction of active error correction and passive sensitivity properties along the GEM.
View Article and Find Full Text PDFHumans continually adapt their movements as they walk on different surfaces, avoid obstacles, etc. External (environmental) and internal (physiological) noise-like disturbances, and the responses that correct for them, each contribute to locomotor variability. This variability may sometimes be detrimental (perhaps increasing fall risk), or sometimes beneficial (perhaps reflecting exploration of multiple task solutions).
View Article and Find Full Text PDF