Publications by authors named "Joseph P Balthasar"

Systemic exposure to released cytotoxic payload contributes to the dose-limiting off-target toxicities of anticancer antibody-drug conjugates (ADC). In this work, we present an "inverse targeting" strategy to optimize the therapeutic selectivity of maytansinoid-conjugated ADCs. Several anti-maytansinoid sdAbs were generated via phage-display technology with binding IC50 values between 10 and 60 nmol/L.

View Article and Find Full Text PDF

Anti-cancer antibody-drug conjugates (ADCs) aim to expand the therapeutic index of traditional chemotherapy by employing the targeting specificity of monoclonal antibodies (mAbs) to increase the efficiency of the delivery of potent cytotoxic agents to malignant cells. In the past three years, the number of ADCs approved by the Food and Drug Administration (FDA) has tripled. Although several ADCs have demonstrated sufficient efficacy and safety to warrant FDA approval, the clinical use of all ADCs leads to substantial toxicity in treated patients, and many ADCs have failed during clinical development due to their unacceptable toxicity profiles.

View Article and Find Full Text PDF

Monomethyl auristatin E (MMAE) is a potent tubulin inhibitor that is used as the payload for four FDA-approved antibody-drug conjugates (ADC). Deconjugated MMAE readily diffuses into untargeted cells, resulting in off-target toxicity. Here, we report the development and evaluation of a humanized Fab fragment (ABC3315) that enhances the therapeutic selectivity of MMAE ADCs.

View Article and Find Full Text PDF

Small therapeutic proteins are receiving increased interest as therapeutic drugs; however, their clinical success has been limited due to their rapid elimination. Here, we report a half-life extension strategy via strategy via red blood cell red blood cell (RBC) hitch-hiking. This manuscript details the development and characterization of novel anti-RBC single-domain antibodies (sdAbs), their genetic fusion to therapeutic antibody fragments (TAF) as bispecific fusion constructs, and their influence on TAF pharmacokinetics and biodistribution.

View Article and Find Full Text PDF

Despite the significant resources dedicated to the development of monoclonal antibody (mAb) therapies for solid tumors, the clinical success, thus far, has been modest. Limited efficacy of mAb in solid tumors likely relates to unique aspects of tumor physiology. Solid tumors have an aberrant vasculature and a dense extracellular matrix that slow both the convective and diffusive transport of mAbs into and within tumors.

View Article and Find Full Text PDF

We have recently shown that coadministration of mAbs with anti-idiotypic distribution enhancers (AIDE) that inhibit mAb binding to tumor antigens enabled increased intratumoral mAb distribution and increased efficacy of an antibody-drug conjugate (trastuzumab emtansine, T-DM1). In this article, a pharmacokinetic/pharmacodynamic (PK/PD) model was applied to predict the impact of this optimization strategy on the within-tumor distribution and antitumor efficacy of trastuzumab-gelonin, where the released payload (gelonin) is expected to exhibit negligible bystander activity. Immunofluorescence histology was used to investigate trastuzumab-gelonin distribution in solid tumors following dosing with or without coadministration of anti-trastuzumab AIDEs.

View Article and Find Full Text PDF

Cell penetrating peptides conjugated to delivery vehicles, such as nanoparticles or antibodies, can enhance the cytosolic delivery of macromolecules. The present study examines the effects of conjugation to cell penetrating and endosomal escape peptides (i.e.

View Article and Find Full Text PDF

This work describes use of anti-carcinoembryonic antigen antibodies (10H6, T84.66) for targeted delivery of an endosomal escape peptide (H6CM18) and gelonin, a type I ribosome inactivating protein. The viability of colorectal cancer cells (LS174T, LoVo) was assessed following treatment with gelonin or gelonin immunotoxins, with or without co-treatment with T84.

View Article and Find Full Text PDF

Our group has developed and experimentally validated a strategy to increase antibody penetration in solid tumors through transient inhibition of antibody-antigen binding. In prior work, we demonstrated that 1HE, an anti-trastuzumab single domain antibody that transiently inhibits trastuzumab binding to HER2, increased the penetration of trastuzumab and increased the efficacy of ado-trastuzumab emtansine (T-DM1) in HER2+ xenograft bearing mice. In the present work, 1HE variants were developed using random mutagenesis and phage display to enable optimization of tumor penetration and efficacy of trastuzumab-based therapeutics.

View Article and Find Full Text PDF

The prediction of monoclonal antibody (mAb) disposition within solid tumors for individual patients is difficult due to inter-patient variability in tumor physiology. Improved a priori prediction of mAb pharmacokinetics in tumors may facilitate the development of patient-specific dosing protocols and facilitate improved selection of patients for treatment with anti-cancer mAb. Here, we report the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), with tumor penetration of the contrast agent gadobutrol used as a surrogate, to improve physiologically based pharmacokinetic model (PBPK) predictions of cetuximab pharmacokinetics in epidermal growth factor receptor (EGFR) positive xenografts.

View Article and Find Full Text PDF

Poor penetration of mAbs in solid tumors is explained, in part, by the binding site barrier hypothesis. Following extravasation, mAbs rapidly bind cellular antigens, leading to the observation that, at subsaturating doses, therapeutic antibody in solid tumors localizes around tumor vasculature. Here we report a unique strategy to overcome the binding site barrier through transient competitive inhibition of antibody-antigen binding.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are currently the largest and most dominant class of therapeutic proteins. Inter-individual variability has been observed for several mAbs; however, an understanding of the underlying mechanisms and factors contributing to inter-subject differences in mAb disposition is still lacking. In this review, we analyze the mechanisms of antibody disposition and the putative mechanistic determinants of inter-individual variability.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells typically produce glycoproteins with N-glycans terminating in α-2,3 sialylation. Human cells produce glycoproteins that include α-2,3 and α-2,6 sialic acids. To examine the impact of altering protein sialylation on pharmacokinetic properties, recombinant human butyrylcholinesterase (BChE) was produced in CHO cells by knocking out the α-2,3 sialyltransferase genes followed by overexpression of the α-2,6 sialyltransferase (26BChE) enzyme.

View Article and Find Full Text PDF

Sensitive and high-throughput measurement of biotherapeutics and biomarkers in plasma and tissues is critical for protein-drug development. Enrichment of target signature peptide (SP) after sample digestion permits sensitive LC-MS-based protein quantification and carries several prominent advantages over protein-level enrichment; however, developing high-quality antipeptide antibodies is challenging. Here we describe a novel, antibody-free, peptide-level-enrichment technique enabling high-throughput, sensitive, and robust quantification of proteins in biomatrices, by highly selective removal of matrix peptides and components via cation-exchange (CX) reversed-phase (RP) SPE with strategically regulated pH and ionic and organic strengths.

View Article and Find Full Text PDF

has become a pathogen of increasing medical importance because of the emergence of multidrug-resistant strains and the high rate of mortality of infected patients. Promising animal study results have been reported recently with active and passive immunization against virulence factors. In the present study, a monoclonal IgG3 antibody, 8E3, was developed with specificity for the K2 capsular polysaccharide of , and its therapeutic potential was assessed.

View Article and Find Full Text PDF

Over the past few decades, monoclonal antibodies (mAbs) have become one of the most important and fastest growing classes of therapeutic molecules, with applications in a wide variety of disease areas. As such, understanding of the determinants of mAb pharmacokinetic (PK) processes (absorption, distribution, metabolism, and elimination) is crucial in developing safe and efficacious therapeutics. In the present review, we discuss the use of physiologically-based pharmacokinetic (PBPK) models as an approach to characterize the in vivo behavior of mAbs, in the context of the key PK processes that should be considered in these models.

View Article and Find Full Text PDF
Article Synopsis
  • - The study improved a pharmacokinetic model to predict how anti-FcRn agents affect natural IgG levels in humans, simulating various doses of monoclonal antibodies and immune globulin.
  • - The model's predictions were compared with real data from the anti-FcRn agent rozanolixizumab, showing fairly accurate results for dose effects on IgG levels.
  • - It suggests that anti-FcRn therapies might be more effective in healthy individuals than in those with higher IgG levels, indicating the model's potential in developing new dosing strategies for these therapies.
View Article and Find Full Text PDF

There is a growing interest in developing inhibitors of the neonatal Fc-receptor, FcRn, for use in the treatment for humoral autoimmune conditions. We have developed a new physiologically based pharmacokinetic model that is capable of characterizing the pharmacokinetics and pharmacodynamics of anti-FcRn monoclonal antibodies (mAb) in mice, rats, and monkeys. The model includes incorporation of FcRn recycling of immune gamma globulin (IgG) in hematopoietic cells in addition to FcRn recycling of IgG in vascular endothelial cells and considers FcRn turnover and intracellular cycling.

View Article and Find Full Text PDF

With this issue of the Journal of Pharmaceutical Sciences, we celebrate the nearly 6 decades of contributions to mechanistic-based modeling and computational pharmaceutical sciences. Along with its predecessor, The Journal of the American Pharmaceutical Association: Scientific Edition first published in 1911, JPharmSci has been a leader in the advancement of pharmaceutical sciences beginning with its inaugural edition in 1961. As one of the first scientific journals focusing on pharmaceutical sciences, JPharmSci has established a reputation for publishing high-quality research articles using computational methods and mechanism-based modeling.

View Article and Find Full Text PDF

Quantitative real-time PCR and Western blot methods were developed to assess neonatal Fc-receptor (FcRn) mRNA and protein expression in human FcRn transgenic mice, Swiss Webster mice, and in select human tissues. Additionally, FcRn turnover was evaluated via pulse-chase. FcRn mRNA expression was significantly higher in transgenic mice when compared to mouse FcRn mRNA in Swiss Webster mice and it ranged from 184-fold higher in the kidney to 109,000-fold higher in the skin.

View Article and Find Full Text PDF

Engineered monoclonal antibodies (mAbs) with pH-sensitive target release, or "catch-and-release" (CAR) binding, have shown promise in decreasing the extent of target-mediated mAb elimination, increasing mAb exposure, and increasing dose potency. This study developed a mechanistic physiologically based pharmacokinetic (PBPK) model to evaluate the effects of pH-sensitive CAR target binding on the disposition of anti-carcinoembryonic antigen (CEA) mAbs in mouse models of colorectal cancer. The PBPK model was qualified by comparing model-predicted plasma concentration-time data with data observed in tumor-bearing mice following the administration of T84.

View Article and Find Full Text PDF

In this study, we examined the effects of target expression, neonatal Fc receptor (FcRn) expression in tumors, and pH-dependent target binding on the disposition of monoclonal antibodies (mAbs) in murine models of colorectal cancer. A panel of anti-carcinoembryonic antigen (CEA) mAbs was developed via standard hybridoma technology and then evaluated for pH-dependent CEA binding. Binding was assessed via immunoassay and radioligand binding assays.

View Article and Find Full Text PDF

Antibiotic-resistant bacterial pathogens are increasingly implicated in hospital- and community-acquired infections. Recent advances in monoclonal antibody (mAb) production and engineering have led to renewed interest in the development of antibody-based therapies for treatment of drug-resistant bacterial infections. Currently, there are three antibacterial mAb products approved by the Food and Drug Administration (FDA) and at least nine mAbs are in clinical trials.

View Article and Find Full Text PDF

For LC-MS-based targeted quantification of biotherapeutics and biomarkers in clinical and pharmaceutical environments, high sensitivity, high throughput, and excellent robustness are all essential but remain challenging. For example, though nano-LC-MS has been employed to enhance analytical sensitivity, it falls short because of its low loading capacity, poor throughput, and low operational robustness. Furthermore, high chemical noise in protein bioanalysis typically limits the sensitivity.

View Article and Find Full Text PDF